scholarly journals Efficiency conditions for multiobjective bilevel programming problems via convexificators

2018 ◽  
Vol 8 (1) ◽  
pp. 177-187 ◽  
Author(s):  
June Liu ◽  
Tao Zhang ◽  
Yu-Xin Fan ◽  
Bing Han ◽  
Yue Zheng

2010 ◽  
Vol 18 (3) ◽  
pp. 403-449 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Ankur Sinha

Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.


2012 ◽  
Vol 14 (3) ◽  
pp. 381-394 ◽  
Author(s):  
José Herskovits ◽  
Mario Tanaka Filho ◽  
Anatoli Leontiev

Sign in / Sign up

Export Citation Format

Share Document