scholarly journals A study of droplet evaporation coupling model based on Eulerian method

Author(s):  
Y. Tang ◽  
J. Shang ◽  
Y. Zhan

Research on engine icing is a hot topic among the world. Different from the aircraft wing or airframe icing, the evaporation phenomenon in the internal flow field has a great influence on the engine icing. Moreover, the thermodynamic coupling between droplets and flow field is not available in current particle trajectory calculations, or only for one-dimensional situation. Therefore, a three-dimensional droplet trajectory calculation model based on Eulerian method is used to demonstrate the thermodynamic coupling between droplets and flow field. The model was verified by NRC small engine icing wind tunnel test data and the flow field evolution is obtained which cannot be obtained by the one-dimensional coupling model. In the meanwhile, the effects of different initial LWC, relative humidity and MVD on the internal flow evaporation were studied, and the trends of droplets and flow field affected by evaporation were obtained. The numerical method in this paper can provide guidance for the subsequent research on engine icing.

Author(s):  
Eric Savory ◽  
Norman Toy ◽  
Shiki Okamoto ◽  
Yoko Yamanishi

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 724-732
Author(s):  
Changchun Ji ◽  
Yudong Wang

AbstractTo investigate the distribution characteristics of the three-dimensional flow field under the slot die, an online measurement of the airflow velocity was performed using a hot wire anemometer. The experimental results show that the air-slot end faces have a great influence on the airflow distribution in its vicinity. Compared with the air velocity in the center area, the velocity below the slot end face is much lower. The distribution characteristics of the three-dimensional flow field under the slot die would cause the fibers at different positions to bear inconsistent air force. The air velocity of the spinning centerline is higher than that around it, which is more conducive to fiber diameter attenuation. The violent fluctuation of the instantaneous velocity of the airflow could easily cause the meltblowing fiber to whip in the area close to the die.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


1999 ◽  
Vol 122 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Riccardo Tresso ◽  
David R. Munoz

Detailed grid generated turbulent analysis has been completed using a three-dimensional hot-wire anemometer and traversing mechanism to identify a homogeneous, isotropic flow region downstream of a square mesh. The three-dimensional fluctuating velocity measurements were recorded along the centerline of a wind tunnel test section and spatially over the entire wind tunnel cross section downstream of the square mesh. Turbulent intensities for various grid sizes and Reynolds numbers ranged from a minimum of 0.2 percent to a maximum of 2.2 percent in each of the three principal velocity directions. Spatial homogeneity and isotropy were determined for several turbulent flow conditions and downstream positions using the method of covariances. Covariances, in theory, should approach zero asymptotically; however, in practice, this was not achievable. A subjective judgment is required to determine downstream location where the variance of the three covariances reaches a value close to zero. The average standard deviation provides an estimate for defining the limit or subjective threshold needed to determine the onset of homogeneous, isotropic flow. Implementing this threshold, a quantitative method was developed for predicting the streamwise location for the onset of the homogeneous, isotropic flow region downstream of a 25.4 mm square grid as a function of Reynolds number. A comparison of skewness, determined from one-dimensional hot wire anemometer measurements, and covariances, determined from three dimensional hot wire anemometer measurements, indicates a need for caution when relying solely on one-dimensional measurements for determination of turbulence isotropy. The comprehensive three-dimensional characterization also provides an improved understanding of spatial distribution of fundamental turbulence quantities generated by the grid within a low-speed wind tunnel. [S0098-2202(00)02501-3]


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


2013 ◽  
Vol 385-386 ◽  
pp. 93-96
Author(s):  
Hong Ji ◽  
Wei Guo Zhu ◽  
Song Chen ◽  
Jing Zhao

The hydraulic cone valve is an important basic component in Fluid drive and control technology. Characteristic of cone valve inner flow filed influences directly the valves performance. Especially when fluid flow in runner is turbulent, characteristics of flow field have great influence on the valves working performance.Main work of this paper is numerical calculation and simulation of cone valve inner runner flow field inside hydraulic hammer. First make a 3D modeling for cone valve using Pro/E, by fluent this paper analyses and discusses the distribution of hydraulic cone valve internal flow field including flow velocity field, pressure field and flow, etc when the cone valve core taper angle is 30°, the gap is 0.5 mm, and inlet velocity is different, analyses position and strength of the vortex, and finds out the main reason for energy consumption.The results of the study show that by the optimal design of the cone valve seat, the density degree of the flow and the size of the vortex is reduced, the energy loss is reduced, negative pressure zone also changes, the noise is reduced and the energy utilization is improved.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Pin Liu ◽  
Norimasa Shiomi ◽  
Yoichi Kinoue ◽  
Ying-zi Jin ◽  
Toshiaki Setoguchi

In order to clarify the effect of rotor inlet geometry of half-ducted propeller fan on performance and velocity fields at rotor outlet, the experimental investigation was carried out using a hotwire anemometer. Three types of inlet geometry were tested. The first type is the one that the rotor blade tip is fully covered by a casing. The second is that the front one-third part of blade tip is opened and the rest is covered. The third is that the front two-thirds are opened and the rest is covered. Fan test and internal flow measurement at rotor outlet were conducted about three types of inlet geometry. At the internal flow measurement, a single slant hotwire probe was used and a periodical multisampling technique was adopted to obtain the three-dimensional velocity distributions. From the results of fan test, the pressure-rise characteristic drops at high flowrate region and the stall point shifts to high flowrate region, when the opened area of blade tip increases. From the results of velocity distributions at rotor outlet, the region with high axial velocity moves to radial inwards, the circumferential velocity near blade tip becomes high, and the flow field turns to radial outward, when the opened area increases.


2016 ◽  
Vol 88 (3) ◽  
pp. 237-253 ◽  
Author(s):  
Nicholus Tayari Akankwasa ◽  
Huiting Lin ◽  
Yuze Zhang ◽  
Jun Wang

In order to regulate turbulence strength and determine airflow characteristics in a new dual-feed rotor spinning unit, the internal flow field is investigated. A computational fluid dynamics technique is employed to numerically study the three-dimensional model of the internal airflow in the new design. The effects of air velocity variation on turbulence strength, negative pressure, Re, and wall pressure distribution are investigated based on simulation data and previous studies. The results show that the turbulence strength and Re increased with increase in inlet air velocity. Pressure profiles inside the rotor varied significantly with positive pressure observed at the channel exits. Minimal inlet velocity maintains the flow field in the rotor interior below 100 m/s, which gives the ideal turbulence required to minimize yarn quality deterioration. The dual-feed rotor spinning unit showed more orderly streamline patterns with fewer vortices compared to the conventional one. The numerical simulation can provide insights on airflow studies and some guidelines for future prototyping and experiments to further improve the new design.


Sign in / Sign up

Export Citation Format

Share Document