Pencarian File Gambar Berdasarkan Dominasi Warna

2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Vina Chovan Epifania ◽  
Eko Sediyono

Abstract. Image File Searching Based on Color Domination. One characteristic of an image that can be used in image searching process is the composition of the colors. Color is a trait that is easily seen by man in the picture. The use of color as a searching parameter can provide a solution in an easier searching for images stored in computer memory. Color images have RGB values that can be computed and converted into HSL color space model. Use of HSL images model is very easy because it can be calculated using a percent, so that in each pixel of the image can be grouped and named, this can give a dominant values of the colors contained in one image. By obtaining these values, the image search can be done quickly just by using these values to a retrieval system image file. This article discusses the use of the HSL color space model to facilitate the searching for a digital image in the digital image data warehouse. From the test results of the application form, a searching is faster by using the colors specified by the user. Obstacles encountered were still searching with a choice of 15 basic colors available, with a limit of 33% dominance of the color image search was not found. This is due to the dominant color in each image has the most dominant value below 33%.   Keywords: RGB, HSL, image searching Abstrak. Salah satu ciri gambar yang dapat dipergunakan dalam proses pencarian gambar adalah komposisi warna. Warna adalah ciri yang mudah dilihat oleh manusia dalam citra gambar. Penggunaan warna sebagai parameter pencarian dapat memberikan solusi dalam memudahkan pencarian gambar yang tersimpan dalam memori komputer. Warna gambar memiliki nilai RGB yang dapat dihitung dan dikonversi ke dalam model HSL color space. Penggunaan model gambar HSL sangat mudah karena dapat dihitung dengan menggunakan persen, sehingga dalam setiap piksel gambar dapat dikelompokan dan diberi nama, hal ini dapat memberikan suatu nilai dominan dari warna yang terdapat dalam satu gambar. Dengan diperolehnya nilai tersebut, pencarian gambar dapat dilakukan dengan cepat hanya dengan menggunakan nilai tersebut pada sistem pencarian file gambar. Artikel ini membahas tentang penggunaan model HSL color space untuk mempermudah pencarian suatu gambar digital didalam gudang data gambar digital. Dari hasil uji aplikasi yang sudah dibuat, diperoleh pencarian yang lebih cepat dengan menggunakan pilihan warna yang ditentukan sendiri oleh pengguna. Kendala yang masih dijumpai adalah pencarian dengan pilihan 15 warna dasar yang tersedia, dengan batas dominasi warna 33% tidak ditemukan gambar yang dicari. Hal ini disebabkan warna dominan disetiap gambar kebanyakan memiliki nilai dominan di bawah 33%. Kata Kunci: RGB, HSL, pencarian gambar

2019 ◽  
Vol 7 (1) ◽  
pp. 37-41
Author(s):  
D. Hema ◽  
◽  
Dr. S. Kannan ◽  

The primary goal of this research work is to extract only the essential foreground fragments of a color image through segmentation. This technique serves as the foundation for implementing object detection algorithms. The color image can be segmented better in HSV color space model than other color models. An interactive GUI tool is developed in Python and implemented to extract only the foreground from an image by adjusting the values for H (Hue), S (Saturation) and V (Value). The input is an RGB image and the output will be a segmented color image.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jungan Chen ◽  
Jean Jiang ◽  
Xinnian Guo ◽  
Lizhe Tan

With IoT development, it becomes more popular that image data is transmitted via wireless communication systems. If bit errors occur during transmission, the recovered image will become useless. To solve this problem, a bit-error aware lossless image compression based on bi-level coding is proposed for gray image compression. But bi-level coding has not considered the inherent statistical correlation in 2D context region. To resolve this shortage, a novel variable-size 2D-block extraction and encoding method with built-in bi-level coding for color image is developed to decrease the entropy of information and improve the compression ratio. A lossless color transformation from RGB to the YCrCb color space is used for the decorrelation of color components. Particularly, the layer-extraction method is proposed to keep the Laplacian distribution of the data in 2D blocks which is suitable for bi-level coding. In addition, optimization of 2D-block start bits is used to improve the performance. To evaluate the performance of our proposed method, many experiments including the comparison with state-of-the-art methods, the effects with different color space, etc. are conducted. The comparison experiments under a bit-error environment show that the average compression rate of our method is better than bi-level, Jpeg2000, WebP, FLIF, and L3C (deep learning method) with hamming code. Also, our method achieves the same image quality with the bi-level method. Other experiments illustrate the positive effect of built-in bi-level encoding and encoding with zero-mean values, which can maintain high image quality. At last, the results of the decrease of entropy and the procedure of our method are given and discussed.


2017 ◽  
Vol 4 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Sukmawati Nur Endah ◽  
Retno Kusumaningrum ◽  
Helmie Arif Wibawa

Skin detection is one of the processes to detect the presence of pornographic elements in an image. The most suitable feature for skin detection is the color feature. To be able to represent the skin color properly, it is needed to be processed in the appropriate color space. This study examines some color spaces to determine the most appropriate color space in detecting skin color. The color spaces in this case are RGB, HSV, HSL, YIQ, YUV, YCbCr, YPbPr, YDbDr, CIE XYZ, CIE L*a*b*, CIE L*u* v*, and CIE L*ch. Based on the test results using 400 image data consisting of 200 skin images and 200 non-skin images, it is obtained that the most appropriate color space to detect the color is CIE L*u*v*.


2021 ◽  
Vol 10 (2) ◽  
pp. 1122-1128
Author(s):  
Syamsul Yakin ◽  
Tasrif Hasanuddin ◽  
Nia Kurniati

Multimedia data is growing rapidly in the current digital era, one of which is digital image data. The increasing need for a large number of digital image datasets makes the constraints faced eventually drain a lot of time and cause the process of image description to be inconsistent. Therefore, a method is needed in processing the data, especially in searching digital image data in large image dataset to find image data that are relevant to the query image. One of the proposed methods for searching information based on image content is content based image retrieval (CBIR). The main advantage of the CBIR method is automatic retrieval process, compared to traditional keyword. This research was conducted on a combination of the HSV color histogram methods and the discrete wavelet transform to extract color features and textures features, while the chi-square distance technique was used to compare the test images with images into a database. The results have showed that the digital image search system with color and texture features have a precision value of 37.5% - 100%, with an average precision value of 80.71%, while the percentage accuracy is 93.7% - 100% with an average accuracy is 98.03%.


2013 ◽  
Vol 278-280 ◽  
pp. 1251-1254
Author(s):  
Feng Xu ◽  
Zhi Yu Liu

In competitive sporting events, the scores confirm replied on manual timing can’t satisfy the requirements, according to the provisions of the IAAF, the major sports event will require the use of electric timing system. At present, the development level of the photo finish collecting still stay in the black-and-white image level, high-speed color linear CCD array technology used in track events final electrical-timing system, carried out in-depth analysis of the various factors that affect image quality of the post-processing, described in digital image processing with gray technology , color balance, histogram equalization and digital image processing techniques so as to get clear, high quality color image data.


2020 ◽  
Vol 4 (3) ◽  
pp. 551-557
Author(s):  
Muhammad zaky ramadhan ◽  
Kemas Muslim Lhaksmana

Hadith has several levels of authenticity, among which are weak (dhaif), and fabricated (maudhu) hadith that may not originate from the prophet Muhammad PBUH, and thus should not be considered in concluding an Islamic law (sharia). However, many such hadiths have been commonly confused as authentic hadiths among ordinary Muslims. To easily distinguish such hadiths, this paper proposes a method to check the authenticity of a hadith by comparing them with a collection of fabricated hadiths in Indonesian. The proposed method applies the vector space model and also performs spelling correction using symspell to check whether the use of spelling check can improve the accuracy of hadith retrieval, because it has never been done in previous works and typos are common on Indonesian-translated hadiths on the Web and social media raw text. The experiment result shows that the use of spell checking improves the mean average precision and recall to become 81% (from 73%) and 89% (from 80%), respectively. Therefore, the improvement in accuracy by implementing spelling correction make the hadith retrieval system more feasible and encouraged to be implemented in future works because it can correct typos that are common in the raw text on the Internet.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2203
Author(s):  
Antal Hiba ◽  
Attila Gáti ◽  
Augustin Manecy

Precise navigation is often performed by sensor fusion of different sensors. Among these sensors, optical sensors use image features to obtain the position and attitude of the camera. Runway relative navigation during final approach is a special case where robust and continuous detection of the runway is required. This paper presents a robust threshold marker detection method for monocular cameras and introduces an on-board real-time implementation with flight test results. Results with narrow and wide field-of-view optics are compared. The image processing approach is also evaluated on image data captured by a different on-board system. The pure optical approach of this paper increases sensor redundancy because it does not require input from an inertial sensor as most of the robust runway detectors.


1993 ◽  
Vol 20 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Yean-Jye Lu ◽  
Xidong Yuan

Image analysis for traffic data collection has been studied throughout the world for more than a decade. A survey of existing systems shows that research was focused mainly on the monochrome image analysis and that the field of color image analysis was rarely studied. With the application of color image analysis in mind, this paper proposes a new algorithm for vehicle speed measurement in daytime. The new algorithm consists of four steps: (i) image input, (ii) pixel analysis, (iii) single image analysis, and (iv) image sequence analysis. It has three significant advantages. First, the algorithm can distinguish the shadows caused by moving vehicles outside the detection area from the actual vehicles passing through the area, which is a difficult problem for the monochrome image analysis technique to handle. Second, the algorithm significantly reduces the image data to be processed; thus only a personal computer is required without the addition of any special hardware. The third advantage is the flexible placement of detection spots at any position in the camera's field of view. The accuracy of the algorithm is also discussed. Key words: speed measurement, vehicle detection, image analysis, image processing, traffic control, traffic measurement and road traffic.


Sign in / Sign up

Export Citation Format

Share Document