scholarly journals Design and Fabrication of a 1.5GHz Microwave Low Noise Amplifier with Suitable Low-noise and High Gain Characteristics

Author(s):  
Cherechi Ndukwe ◽  
Oliver Ozioko ◽  
Okere A U

This paper presents the design, simulation and fabrication of a low noise amplifier with high gain of 1.5GHz. In communication systems, there is always difficulty in distinguishing the received signal from noise at very low signal powers. A low noise amplifier (LNA) is an effective and low-cost way of enhancing this signal quality through signal amplification at the receiver. In this work, LNA simulation and a novel design was carried out using the N76038A field effect transistor (FET). To ensure it is stable over a wide range of frequencies, the input and output stability of the transistor were plotted over its operating frequencies (0.1 GHz to 18 GHz). Constant gain and noise figure circles were plotted and the source impedance properly chosen. The input network was matched to the source impedance and conjugate matching used to match the output. The schematic was converted to microstrip and produced on a printed circuit board. Testing was carried out using the vector network analyser (VNA) and matching errors then corrected by calibration process. The fabricated LNA has a gain of 13.76dB and noise figure of 1.57dB which is in close agreement with a simulation result of 14.25dB and 1.56dB respectively.

2013 ◽  
Vol 5 (4) ◽  
pp. 453-461 ◽  
Author(s):  
David M.P. Smith ◽  
Laurens Bakker ◽  
Roel H. Witvers ◽  
Bert E.M. Woestenburg ◽  
Keith D. Palmer

A compact, microstrip, two-stage, room temperature, single-ended low noise amplifier (LNA) is designed using commercial components for Aperture Tile in Focus (APERTIF), a square kilometre array (SKA) pathfinder project. Various techniques are investigated to insert inductance between the source pad of the package and the ground plane of the printed circuit board (PCB), with the chosen design able to do this using standard manufacturing techniques. The desired noise temperature of 25 K (noise figure (NF) of 0.36 dB) is met over the 1.0–1.8 GHz band, with an input return loss better than 10 dB.


2017 ◽  
Vol 3 (2) ◽  
pp. 599-602
Author(s):  
Ankit Malhotra ◽  
Thorsten Buzug

AbstractMagnetic particle spectrometry (MPS) is a novel technique used to measure the magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs). Therefore, it is one of the most important tools for the characterization of the SPIONs for imaging modalities such as magnetic particle imaging (MPI) and Magnetic Resonance Imaging (MRI). In MPS, change in the particle magnetization induces a voltage in a dedicated receive coil. The amplitude of the signal can be very low (ranging from a few nV to 100 μV) depending upon the concentration of the nanoparticles. Hence, the received signal needs to be amplified with a low noise amplifier (LNA). LNA’s paramount task is to amplify the received signal while keeping the noise induced by its own circuitry minimum. In the current research, we purpose modeling, design, and development of a prototyped LNA for MPS. The designed prototype LNA is based on the parallelization technique of Op-amps. The prototyped LNA consists of 16 Op-amps in parallel and is manufactured on a printed circuit board (PCB), with a size of 110.38 mm × 59.46 mm and 234 components. The input noise of the amplifier is approx. 546 pV/√Hz with a noise figure (NF) of approx. 1.4 dB with a receive coil termination. Furthermore, a comparison between the prototyped LNA and a commercially available amplifier is shown.


2015 ◽  
Vol 8 (8) ◽  
pp. 1133-1139 ◽  
Author(s):  
Charles Baylis ◽  
Robert J. Marks ◽  
Lawrence Cohen

In radar receivers, the low noise amplifier(LNA)must provide very low noise figure and high gain to successfully receive very low signals reflected off of illuminated targets. Obtaining low noise figure and high gain, unfortunately, is a well-known trade-off that has been carefully negotiated by design engineers for years. This paper presents a fundamental solution method for the source reflection coefficient providing the maximum available gain under a given noise figure constraint, and also for the lowest possible noise figure under a gain constraint. The design approach is based solely on the small-signal S-parameters and noise parameters of the device; no additional measurements or information are required. This method is demonstrated through examples. The results are expected to find application in design of LNAs and in real-time reconfigurable amplifiers for microwave communication and radar receivers.


2018 ◽  
Vol 4 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Ankit Malhotra ◽  
Thorsten M. Buzug

AbstractMagnetic particle imaging (MPI) is a novel tomographic imaging modality which uses static and dynamic magnetic fields to measure the magnetic response generated by superparamagnetic iron oxide nanoparticles (SPIONs). For the characterization of the SPIONs magnetic particle spectroscopy (MPS) is used. In the current research, a low noise amplifier (LNA) suitable for MPI and MPS is presented. LNA plays a significant role in the receive chain of MPI and MPS by amplifying the signals from the nanoparticles while keeping the noise induced through its own circuitry minimal. The LNA is based on the summing configuration and fabricated on a printed circuit board (PCB). Moreover, the prototyped LNA is compared with a commercially available pre-amplifier. The input voltage noise of the prototyped LNA with a receiving coil of series resistance of 0.551 mΩ and an inductance of 130 μH is 561 pV/√Hz with a noise figure (NF) of 11.57 dB.


Author(s):  
Kamil Pongot ◽  
Abdul Rani Othman ◽  
Zahriladha Zakaria ◽  
Mohamad Kadim Suaidi ◽  
Abdul Hamid Hamidon ◽  
...  

This research present a design of a higher  gain (66.38dB) for PHEMT LNA  using an inductive drain feedback technique for wireless application at 5.8GHz. The amplifier it is implemented using PHEMT FHX76LP transistor devices.  The designed circuit is simulated with  Ansoft Designer SV.  The LNA was designed using  T-network as a matching technique was used at the input and output terminal,  inductive generation to the source and an inductive drain feedback. The  low noise amplifier (LNA) using lumped-component provides a noise figure 0.64 dB and a gain (S<sub>21</sub>) of 68.94 dB. The output reflection (S<sub>22</sub>), input reflection (S<sub>11</sub>) and return loss (S<sub>12</sub>) are -17.37 dB, -15.77 dB and -88.39 dB respectively. The measurement shows the  stability was at  4.54 and 3-dB bandwidth of 1.72 GHz. While, the  low noise amplifier (LNA) using  Murata manufactured component provides a noise figure 0.60 dB and a gain (S<sub>21</sub>) of 66.38 dB. The output reflection (S<sub>22</sub>), input reflection (S<sub>11</sub>) and return loss (S<sub>12</sub>) are -13.88 dB, -12.41 dB and -89.90 dB respectively. The measurement shows the  stability was at  6.81 and 3-dB bandwidth of 1.70 GHz. The input sensitivity more than -80 dBm  exceeded the standards required by IEEE 802.16.


Low Noise Amplifier (LNA) plays an important role in radio receivers. It mainly determines the system noise and intermodulation behavior of overall receiver. LNA design is more challenging as it requires high gain, low noise figure, good input and output matching and unconditional stability. Further, designing a Low noise Amplifier requires active device selection, amplifier topology, optimization algorithms for superlative results. Hence this paper presents performance analysis of CMOS LNA based on different topologies and optimization algorithms for 180nm RF CMOS design in S band frequency. Here the best results, various limitations in each topology are reviewed and required specifications are determined in each designing. Further this best topology is used for designing LNA circuit which could be used in Indian Regional Navigation Satellite System (IRNSS) applications in dual band frequency.


2014 ◽  
Vol 17 (09) ◽  
pp. 145-152
Author(s):  
Alexander Andreevich Samuilov ◽  
◽  
Igor Miroslavovich Dobush ◽  
Aleksey Anatolevich Kalentev ◽  
◽  
...  

2014 ◽  
Vol 23 (05) ◽  
pp. 1450058
Author(s):  
S. MANJULA ◽  
D. SELVATHI

Low noise amplifier (LNA) is an important component in RF receiver front end. An inductively degenerated cascode low noise amplifier (IDCLNA) is mostly preferred for producing good trade-offs such as high gain, low noise figure (NF), high reverse isolation and low power consumption for narrowband applications. This IDCLNA structure is also used to reduce the gate induced noise on the noise performance by inserting the capacitance in parallel with the gate-to-source capacitance of main transistor. Usually, the parasitic overlap capacitances can impose serious constraints on achievable performance and is taken into account in IDCLNA. In this paper, IDCLNA is designed at a frequency of 2.4 GHz with analyzing the impact of parasitic overlap capacitances on IDCLNA in terms of unity current gain frequency (f T ) which will affect the NF of IDCLNA and simulated using 130 nm, 90 nm and 65 nm CMOS technologies. The NF of IDCLNA with and without parasitic overlap capacitances are analyzed and compared for different short channel CMOS processes. Simulation results show that the parasitic overlap capacitances have advantageous to reduce the gate induced noise in IDCLNA for 130-nm CMOS process for 2.4 GHz applications.


1999 ◽  
Vol 603 ◽  
Author(s):  
Guru Subramanyam ◽  
Felix A. Miranda ◽  
Robert R. Romanofsky ◽  
Fred Van Keuls ◽  
Chonglin Chen

AbstractIn this paper we discuss the performance of a proof-of-concept of a tunable band pass filter (BPF)/Low Noise Amplifier (LNA) hybrid circuit for a possible gain-compensated down-converter targeted for the next generation of K-band satellite communication systems. Electrical tunability of the filter is obtained through the nonlinear electric field dependence of the relative dielectric constant of a ferroelectric thin-film such as strontium titanate (SrTiO3) or barium strontium titanate (BaxSr1−xTiO3). Experimental results show that the BPFs are tunable by more than 5%, with a bipolar biasing scheme employed. The BPF/LNA tunable hybrid circuit was used to study the effect of tuning on the hybrid circuit's performance especially on the amplifier's noise-figure and the gain.


2016 ◽  
Vol 58 (7) ◽  
pp. 1618-1622 ◽  
Author(s):  
B. T. Venkatesh Murthy ◽  
I. Srinivasa Rao

Sign in / Sign up

Export Citation Format

Share Document