scholarly journals Exploiting Wavelet Transform, Principal Component Analysis, Support Vector Machine, and K-Nearest Neighbors for Partial Face Recognition

2019 ◽  
Vol 3 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Mustafa H. Mohammed Alhabib ◽  
Mustafa Zuhaer Nayef Al-Dabagh ◽  
Firas H. AL-Mukhtar ◽  
Hussein Ibrahim Hussein

Facial analysis has evolved to be a process of considerable importance due to its consequence on the safety and security, either individually or generally on the society level, especially in personal identification. The paper in hand applies facial identification on a facial image dataset by examining partial facial images before allocating a set of distinctive characteristics to them. Extracting the desired features from the input image is achieved by means of wavelet transform. Principal component analysis is used for feature selection, which specifies several aspects in the input image; these features are fed to two stages of classification using a support vector machine and K-nearest neighborhood to classify the face. The images used to test the strength of the suggested method are taken from the well-known (Yale) database. Test results showed the eligibility of the system when it comes to identify images and assign the correct face and name.

2021 ◽  
pp. 1-15
Author(s):  
Ashutosh Dhamija ◽  
R. B. Dubey

Face recognition is one of the most challenging and demanding field, since aging affects the shape and structure of the face. Age invariant face recognition is a relatively new area in face recognition studies, which in real-world implementations recently gained considerable interest due to its huge potential and relevance. The Age invariant face recognition, however, is still evolving and evolving, providing substantial potential for further study and progress inaccuracy. Major issues with the age invariant face recognition involve major variations in appearance, texture, and facial features and discrepancies in position and illumination. These problems restrict the age invariant face recognition systems developed and intensify identity recognition tasks. To address this problem, a new technique Quadratic Support Vector Machine- Principal Component Analysis (QSVM-PCA) is introduced. Experimental results suggest that our QSVM-PCA achieved better results especially when the age range is larger than other existing techniques of face-aging dataset of FGNET. The maximum accuracy achieved by demonstrated methodology is 98.87%.


Author(s):  
Naisheng Liang ◽  
Youcai Tuo ◽  
Yun Deng ◽  
Tianfu He

The entrainment and accumulation of ice floes in front of the sluice gates are closely related to the water transport efficiency and safe operation of the channel during an ice period. A flume study is carried out for a sluice gate with free outflow. A framework of stacking ensemble models is used to analyze the data, which consists of a two-level structure including the principal component analysis (PCA) and the support vector machine (SVM) algorithms. Based on the mechanism of ice floe accumulation, ten input characteristics of the machine learning (ML) model are selected. The PCA method is used to eliminate redundant information. The first principal component, with a contribution rate of 71.76%, and the second principal component, with a contribution of rate 15.64%, are extracted as the inputs of the SVM model, and the state of the floating ice in front of the gate is used to determine the classification labels. The 5-fold cross-validation method is used to train the model. The training results showed that the Gaussian radial basis functions (RBF) were the optimal kernel function. The performance of the developed model is measured using area under curve (AUC), accuracy (Acc) and F1-score (F1) values as statistical indicators. The results showed that the established PCA-SVM model improves the Bernoulli naive Bayes (Bernoulli NB) classifier and K-nearest neighbors’ algorithm (KNN) models. It increasing the AUC value by 11% and 5%, the Acc value by 16% and 17%, and the F1 value by 17% and 2%, respectively.


2022 ◽  
pp. 146808742110707
Author(s):  
Aran Mohammad ◽  
Reza Rezaei ◽  
Christopher Hayduk ◽  
Thaddaeus Delebinski ◽  
Saeid Shahpouri ◽  
...  

The development of internal combustion engines is affected by the exhaust gas emissions legislation and the striving to increase performance. This demands for engine-out emission models that can be used for engine optimization for real driving emission controls. The prediction capability of physically and data-driven engine-out emission models is influenced by the system inputs, which are specified by the user and can lead to an improved accuracy with increasing number of inputs. Thereby the occurrence of irrelevant inputs becomes more probable, which have a low functional relation to the emissions and can lead to overfitting. Alternatively, data-driven methods can be used to detect irrelevant and redundant inputs. In this work, thermodynamic states are modeled based on 772 stationary measured test bench data from a commercial vehicle diesel engine. Afterward, 37 measured and modeled variables are led into a data-driven dimensionality reduction. For this purpose, approaches of supervised learning, such as lasso regression and linear support vector machine, and unsupervised learning methods like principal component analysis and factor analysis are applied to select and extract the relevant features. The selected and extracted features are used for regression by the support vector machine and the feedforward neural network to model the NOx, CO, HC, and soot emissions. This enables an evaluation of the modeling accuracy as a result of the dimensionality reduction. Using the methods in this work, the 37 variables are reduced to 25, 22, 11, and 16 inputs for NOx, CO, HC, and soot emission modeling while maintaining the accuracy. The features selected using the lasso algorithm provide more accurate learning of the regression models than the extracted features through principal component analysis and factor analysis. This results in test errors RMSETe for modeling NOx, CO, HC, and soot emissions 19.22 ppm, 6.46 ppm, 1.29 ppm, and 0.06 FSN, respectively.


Sign in / Sign up

Export Citation Format

Share Document