scholarly journals Improvement of Transient Stability Using Different-Different FACTS Devices

2020 ◽  
Vol 5 (2) ◽  
pp. 35-37
Author(s):  
Vipin Kumar Pandey ◽  
Dr. Malay S Das ◽  
Dr. Anula Khare

Due to increase in population and industrial growth, insufficient energy resources to generate or transmit the power in power system, increase in load causes power demand in the electrical power system. These power demand leads to voltage instability, increase the losses, reduces the power transfer capability and stability of the power system. To overcome this stability problem FACTS devices are optimally located in the power system to examine the stability of the system. To locate the FACTS devices different optimization algorithms are used in order to improve the stability of the electrical power system.

2013 ◽  
Vol 12 (2) ◽  
pp. 153
Author(s):  
Nathaniel L Bijang

ANALISA  WAKTU PEMUTUSAN KRITIS SUATU SISTEM KELISTRIKAN  ABSTRAK Kestabilan adalah kemampuan mesin sinkron dari sistem tenaga listrik untuk mencapai kondisi stabil pada kondisi operasi baru yang sama atau identik dengan kondisi sebelum terjadi gangguan. Umumnya analisa kestabilan terbagi dalam dua kategori yaitu kestabilan steady  state yaitu analisa sistem untuk kembali ke kondisi stabil setelah mengalami gangguan kecil dan kestabilan transient yaitu analisa sistem untuk kembali ke kondisi normal/stabil setelah mengalami gangguan besar. Studi/analisa stabilitas sangat diperlukan saat perencanaan pembangkit  dan transmisi.   Analisa/studi stabilitas  sistem tenaga listrik membantu untuk menentukan setting waktu on/off relai proteksi , waktu pemutusan kritis circuit breaker, level tegangan dan kapasitas transfer diantara sistem-sistem. Kata kunci: Mesin sinkron, stabilitas, waktu pemutusan kritis  CRITICAL CLEARING TIME ANALYSIS ELECTRICAL POWER SYSTEM ABSTRACT The stability problem is concerned with the behavior of the synchronous machines after  a disturbance. Transient stability studies are needed to ensure the system can withstand the transient condition following a major disturbance. Frequently,such studies are conducted when new generating and transmitting facilities are planned. The studies are helpful  in determining such things as the nature of the relaying system needed, critical clearing time of circuit breakers, voltage level of, and transfer capability between systems. Keywords: Synchronous machine, stability, critical clearing time


Author(s):  
Saurabh Kamble ◽  
◽  
Swarna Kanojiya ◽  
Yogita Male ◽  
Gaurav Ingale ◽  
...  

Author(s):  
Ramnarayan Patel ◽  
Vasundhara Mahajan ◽  
Vinay Pant

Power engineers are currently facing challenges to increase the power transfer capabilities of existing transmission system. Flexible AC Transmission system (FACTS) controllers can balance the power flow and thereby use the existing power system network most efficiently. Because of their fast response, FACTS controllers can also improve the stability of an electrical power system by helping critically disturbed generators to give away the excess energy gained through the acceleration during fault. Thyristor controlled series compensator (TCSC) is an important device in FACTS family, and is widely recognized as an effective and economical means to solve the power system stability problem. TCSC is used as series compensator in transmission system. In the present work a TCSC controller is designed and tested over a single machine infinite bus (SMIB) as well as a multi-machine power system. Detailed simulation studies are carried out with MATLAB/SIMULINK environment and the effect of the TCSC parameter variations over the system stability is studied.


2012 ◽  
Vol 42 (1) ◽  
pp. 465-472 ◽  
Author(s):  
Juozas Augutis ◽  
Inga Žutautaitė ◽  
Virginijus Radziukynas ◽  
Ričardas Krikštolaitis ◽  
Sigitas Kadiša

Author(s):  
Rashid H. AL-Rubayi ◽  
Luay G. Ibrahim

<span>During the last few decades, electrical power demand enlarged significantly whereas power production and transmission expansions have been brutally restricted because of restricted resources as well as ecological constraints. Consequently, many transmission lines have been profoundly loading, so the stability of power system became a Limiting factor for transferring electrical power. Therefore, maintaining a secure and stable operation of electric power networks is deemed an important and challenging issue. Transient stability of a power system has been gained considerable attention from researchers due to its importance. The FACTs devices that provide opportunities to control the power and damping oscillations are used. Therefore, this paper sheds light on the modified particle swarm optimization (M-PSO) algorithm is used such in the paper to discover the design optimal the Proportional Integral controller (PI-C) parameters that improve the stability the Multi-Machine Power System (MMPS) with Unified Power Flow Controller (UPFC). Performance the power system under event of fault is investigating by utilizes the proposed two strategies to simulate the operational characteristics of power system by the UPFC using: first, the conventional (PI-C) based on Particle Swarm Optimization (PI-C-PSO); secondly, (PI-C) based on modified Particle Swarm Optimization (PI-C-M-PSO) algorithm. The simulation results show the behavior of power system with and without UPFC, that the proposed (PI-C-M-PSO) technicality has enhanced response the system compared for other techniques, that since it gives undershoot and over-shoot previously existence minimized in the transitions, it has a ripple lower. Matlab package has been employed to implement this study. The simulation results show that the transient stability of the respective system enhanced considerably with this technique.</span>


Author(s):  
Babatunde Olusegun Adewolu ◽  
Akshay Kumar Saha

Applications of Flexible AC Transmission Systems (FACTS) devices for enhancement of Available Transfer Capability (ATC) is gaining attention due to economic and technical limits of the conventional methods involving physical network expansions. FACTS allocation which is sine-qua-non to its performance is a major problem and it is being addressed in recent time with heuristic algorithms. Brain Storm Optimization Algorithms (BSOA) is a new heuristic and predicting optimization algorithms which revolutionizes human brainstorming process. BSOA is engaged for the optimum setting of FACTS devices for enhancement of ATC of a deregulated electrical power system network in this study. ATC enhancement, bus voltage deviation minimization and real power loss regulation are formulated into multi-objective problems for FACTS allocation purposes. Thyristor Controlled Series Capacitor (TCSC) is considered for simulation and analyses because of its fitness for active power control among other usefulness. ATC values are obtained for both normal and N-1-line outage contingency cases and these values are enhanced for different bilateral and multilateral power transactions. IEEE 30 Bus system is used for demonstration of the effectiveness of this approach in a Matlab software environment. Obtained enhanced ATC values for different transactions during normal evaluation cases are then compared with enhanced ATC values obtained with Particle Swarm Optimization (PSO) set TCSC technique under same trading. BSO behaved much like PSO throughout the achievements of other set objectives but performed better in ATC enhancement with 27.12 MW and 5.24 MW increase above enhanced ATC values achieved by the latter. The comparative of set objectives values relative to that obtained with PSO methods depict suitability and advantages of BSOA technique.


Sign in / Sign up

Export Citation Format

Share Document