scholarly journals IDENTIFIKASI FIBRILASI ATRIUM PADA ISYARAT ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM)

2018 ◽  
Vol 9 (1) ◽  
pp. 231-240
Author(s):  
Mohammad Rofii

Jantung merupakan salah satu organ penting yang terdapat pada tubuh manusia. Fungsi vital yang diperankan oleh organ jantung berpengaruh besar terhadap kondisi seseorang yang dapat dilihat dari isyarat fisiologi yang dihasilkan oleh aktivitas kelistrikan jantung yang dapat diukur dan direkam berupa electrocardiogram (EKG). Tujuan dari penelitian ini adalah untuk mengidentifikasi kelainan jantung atau aritmia berupa atrial fibrillation (AF) pada isyarat EKG. Data penelitian yang digunakan berasal dari Rumah Sakit  Umum Daerah Tugurejo Semarang yang  terdiri dari data  pasien dengan kasus  atrial fibrillation (AF) dan data ECG normal atau normal sinus rhythm (NSR). Data yang diambil dalam bentuk data cetak, selanjutnya di lakukan scanning   untuk mendapatkan data citra digital agar dapat diproses dengan komputer. Pada penelitian ini terdapat beberapa tahapan, diantaranya adalah pra-pengolahan, ekstraksi ciri, dan klasifikasi. Proses ekstraksi ciri berdasarkan ciri statistik (mean, standard deviation, kurtosis, variance, skewness) isyarat periodogram dari EKG, selanjutnya diklasifikasi menggunakan algoritma Support Vector Machine (SVM) dan Naive bayes Classifier (NBC) sebagai algoritma pembanding. Hasil yang didapatkan pada penelitian ini, SVM memiliki kinerja yang lebih baik dengan nilai akurasi sebesar sebesar 84,0%, sensitivitas 80,5%, dan spesifisitas 92,8%.

2021 ◽  
Vol 2 (2) ◽  
pp. 96-104
Author(s):  
REYNALDA NABILA CIKANIA

Halodoc is a telemedicine-based healthcare application that connects patients with health practitioners such as doctors, pharmacies, and laboratories. There are some comments from halodoc users, both positive and negative comments. This indicates the public's concern for the Halodoc application so it is necessary to analyze the sentiment or comments that appear on the Halodoc application service, especially during the COVID-19 pandemic in order for Halodoc application services to be better. The Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms are used to analyze the public sentiment of Halodoc's telemedicine service application users. The negative category sentiment classification result was 12.33%, while the positive category sentiment was 87.67% from 5,687 reviews which means that the positive review sentiment is more than the negative review sentiment. The accuracy performance of the Naive Bayes Classifier Algorithm resulted in an accuracy rate of 87.77% with an AUC value of 57.11% and a G-Mean of 40.08%, while svm algorithm with KERNEL RBF had an accuracy value of 86.1% with an AUC value of 60.149% and a G-Mean value of 49.311%. Based on the accuracy value of the model can be known SVM Kernel RBF model better than NBC on classifying the review of user sentiment of halodoc telemedicine service


2019 ◽  
Vol 12 (2) ◽  
pp. 32-38
Author(s):  
Iin Ernawati

This study was conducted to text-based data mining or often called text mining, classification methods commonly used method Naïve bayes classifier (NBC) and support vector machine (SVM). This classification is emphasized for Indonesian language documents, while the relationship between documents is measured by the probability that can be proven with other classification algorithms. This evident from the conclusion that the probability result Naïve Bayes Classifier (NBC) word “party” at least in the economic document and political. Then the result of the algorithm support vector machine (svm) with the word “price” and “kpk” contains in both economic and politic document.  


2021 ◽  
Vol 20 (2) ◽  
pp. 177
Author(s):  
Putri Agung Permatasari ◽  
Linawati Linawati ◽  
Lie Jasa

Media sosial saat ini telah menjadi bagian penting dalam kehidupan sehari-hari tidak hanya untuk kebutuhan pribadi melainkan bisa di gunakan dalam bisnis, serta banyak hal yang bisa dilakukan. Media sosial yang digunakan seperti Facebook, Twitter, Youtube, Instagram, Likenid, dan Whatsapp. Dengan adanya media sosial tersebut banyaknya data yang ada berupa gambar, comment berupa text atau emoticon, video, dan lainnya, sehingga masyarakat bebas beropini. Dengan adanya analisis sentimen opini yang berkembang dan banyak di media sosial tersebut dapat menghasilkan data dan informasi yang bermanfaat. Dalam analisis sentimen diperlukannya algoritma klasifikasi data diantaranya Naive Bayes Classifier, Support Vector Machine, K-NN, RNN, C4.5, Lexicon Based, LDA Based Topic Modeling, dan beberapa algoritma lainnya. Artikel ini menelaah beberapa literature analisis sentimen pada media sosial. Saat ini media sosial yang sering digunakan dalam analisis adalah Twitter dan pengguna algoritma yang dapat meningkatkan tingkat akurasi adalah algoritma Naive Bayes Classifier dan Support Vector Machine.  Hasil perhitungan akurasi klasifikasi data berbeda-beda terlihat pada data uji pada penelitian tersebut.


Author(s):  
Debby Alita ◽  
Sigit Priyanta ◽  
Nur Rokhman

Background: Indonesia is an active Twitter user that is the largest ranked in the world. Tweets written by Twitter users vary, from tweets containing positive to negative responses. This agreement will be utilized by the parties concerned for evaluation.Objective: On public comments there are emoticons and sarcasm which have an influence on the process of sentiment analysis. Emoticons are considered to make it easier for someone to express their feelings but not a few are also other opinion researchers, namely by ignoring emoticons, the reason being that it can interfere with the sentiment analysis process, while sarcasm is considered to be produced from the results of the sarcasm sentiment analysis in it.Methods: The emoticon and no emoticon categories will be tested with the same testing data using classification method are Naïve Bayes Classifier and Support Vector Machine. Sarcasm data will be proposed using the Random Forest Classifier, Naïve Bayes Classifier and Support Vector Machine method.Results: The use of emoticon with sarcasm detection can increase the accuracy value in the sentiment analysis process using Naïve Bayes Classifier method.Conclusion: Based on the results, the amount of data greatly affects the value of accuracy. The use of emoticons is excellent in the sentiment analysis process. The detection of superior sarcasm only by using the Naïve Bayes Classifier method due to differences in the amount of sarcasm data and not sarcasm in the research process.Keywords:  Emoticon, Naïve Bayes Classifier, Random Forest Classifier, Sarcasm, Support Vector Machine


2021 ◽  
Vol 10 (3) ◽  
pp. 432-437
Author(s):  
Devi Irawan ◽  
Eza Budi Perkasa ◽  
Yurindra Yurindra ◽  
Delpiah Wahyuningsih ◽  
Ellya Helmud

Short message service (SMS) adalah salah satu media komunikasi yang penting untuk mendukung kecepatan pengunaan ponsel oleh pengguna. Sistem hibrid klasifikasi SMS digunakan untuk mendeteksi sms yang dianggap sampah dan benar. Dalam penelitian ini yang diperlukan adalah mengumpulan dataset SMS, pemilihan fitur, prapemrosesan, pembuatan vektor, melakukan penyaringan dan pembaharuan sistem. Dua jenis klasifikasi SMS pada ponsel saat ini ada yang terdaftar sebagai daftar hitam (ditolak) dan daftar putih (diterima). Penelitian ini menggunakan beberapa algoritma seperti support vector machine, Naïve Bayes classifier, Random Forest dan Bagging Classifier. Tujuan dari penelitian ini adalah untuk menyelesaikan semua masalah SMS yang teridentifikasi spam yang banyak terjadi pada saat ini sehingga dapat memberikan masukan dalam perbandingan metode yang mampu menyaring dan memisahkan sms spam dan sms non spam.  Pada penelitian ini menghasilkan bahwa Bagging classifier algorithm ini mendapatkan ferformance score tertinggi dari algoritma yang lain yang dapat dipergunakan sebagai sarana untuk memfiltrasi SMS yang masuk ke dalam inbox pengguna dan Bagging classifier algorithm dapat memberikan hasil filtrasi yang akurat untuk menyaring SMS yang masuk.


Sign in / Sign up

Export Citation Format

Share Document