Efficient Dynamic Acknowledgement Scheme for Manet

2021 ◽  
Vol 07 (3&4) ◽  
pp. 1-6
Author(s):  
K Thamizhmaran ◽  

Mobile Adhoc Networks (MANET) is the decentralized type of network and it does not rely on pre-existing infrastructure. All nodes work as routers and take path in discovery and maintenance of routes to other nodes in the network. The Energy Efficiency continues to be a key factor in limitingthe deploy ability of ad-hoc networks. Deployingan energy efficient system exploiting themaximum life time of the network has remained agreat challenge since years. The major concern inWireless network in recent days is Energy Consumption. There are numerous algorithms proposed to overcome this issue. In this paper proposed a new intrusion detection system is Enhanced Adaptive 3 Acknowledgement (EA3ACK) using Energy Efficiency Dynamic State (EEDS) algorithm. This algorithmis designed to increase the network lifetime and remaining energy bycontinuously monitoring the individual nodes inthe network, thereby it increases the quality ofservice of the network. Network Simulator (NS2) is used to implement & test our proposed system. The proposed EEDS- EA3ACK algorithm provides secure transmission & further it improves network performance.

2017 ◽  
Vol 7 (1.1) ◽  
pp. 477
Author(s):  
Joshua Reginald Pullagura ◽  
D Venkata Rao

In ad hoc network, the topology of network changes frequently due to the mobile nature of nodes where the communication is possible without any fixed network infrastructure. Mobile nodes are battery operated and so energy efficient routing should be provided which increases the network life time. The existing routing mechanisms do not consider both hop count and energy of nodes for data transmission. In this paper we propose a routing mechanism where data transfer from source to destination is based on the minimum hop count and residual energy of mobile nodes. The proposed RPAR protocol shows better performance when compared to existing Energy power aware routing  protocol .The analysis is carried out by using network simulator (NS-2), the simulation results shows that the proposed routing mechanism provides energy efficient and reliable  routing in ad hoc networks.


2021 ◽  
Vol 13 (0203) ◽  
pp. 110-116
Author(s):  
Sunil Kumar ◽  
Maninder Singh

A Mobile Ad Hoc Network (MANET) is much more vulnerable to various security attacks due to its high mobility, multi-hop communication and the absence of centralized administration. In this paper, we investigate the impact of Jellyfish periodic dropping attack on MANETs under different routing protocols. This investigate is under the class of denial-of-service attack and targets closed loop flows which results in delay and data loss. In this paper, the simulation results are gathered using OPNET network simulator and its effect on network performance is studied by analysing re-transmission attempts, network load and throughput. The results have shown that the impact of Jellyfish periodic dropping attack which reduces the network performance. Performance shows OLSR performs better than AODV under periodic drop attack.


2020 ◽  
Vol 17 (4A) ◽  
pp. 588-597
Author(s):  
Ala'eddin Masadeh ◽  
Haythem Bany Salameh ◽  
Ahmad Abu-El-Haija

This work investigates the problem of managing the transmission power and assigning channels for multi-channel single-radio Cognitive Radio Ad-Hoc Networks (CRAHNs). The considered network consists of M primary users and N secondary users, where the secondary users can use the licensed channels opportunistically when they are not utilized by the primary users. The secondary users have the capability of sensing the licensed channels and determine their occupation status. They are also able to control their transmission power such that the transmitted data can be received with high quality-of-service with the lowest possible transmission power, and minimum interference among the secondary users. This also contributes in increasing the frequency spatial reuse of the licensed channels by the secondary users, when the channels are unoccupied, which increases the network throughput. This work proposes a channel assignment algorithm aims at assigning the unoccupied licensed channels among secondary users efficiently, and a transmission power control aims at tuning the transmission power used by the secondary users to maximize the network throughput. The results show an enhancement achieved by the proposed protocol when it is integrated to the considered network, which is seen through increasing the network throughput and decreasing in the access delay. In this context, the Network Simulator 2 (NS2) was used to verify our proposed protocol, which indicates a significant enhancement in network performance


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4779
Author(s):  
Sorin Buzura ◽  
Bogdan Iancu ◽  
Vasile Dadarlat ◽  
Adrian Peculea ◽  
Emil Cebuc

Software-defined wireless sensor networking (SDWSN) is an emerging networking architecture which is envisioned to become the main enabler for the internet of things (IoT). In this architecture, the sensors plane is managed by a control plane. With this separation, the network management is facilitated, and performance is improved in dynamic environments. One of the main issues a sensor environment is facing is the limited lifetime of network devices influenced by high levels of energy consumption. The current work proposes a system design which aims to improve the energy efficiency in an SDWSN by combining the concepts of content awareness and adaptive data broadcast. The purpose is to increase the sensors’ lifespan by reducing the number of generated data packets in the resource-constrained sensors plane of the network. The system has a distributed management approach, with content awareness being implemented at the individual programmable sensor level and the adaptive data broadcast being performed in the control plane. Several simulations were run on historical weather and the results show a significant decrease in network traffic. Compared to similar work in this area which focuses on improving energy efficiency with complex algorithms for routing, clustering, or caching, the current proposal employs simple computing procedures on each network device with a high impact on the overall network performance.


2020 ◽  
Vol 12 (6) ◽  
pp. 49-63
Author(s):  
Yasir Mohammed ◽  
Maha Abdelhaq ◽  
Raed Alsaqour

A Mobile Ad-Hoc Network (MANET) is a decentralized network of mobile node that are connected to an arbitrary topology via wireless connections. The breakdown of the connecting links between adjacent nodes will probably lead to the loss of the transferred data packets. In this research, we proposed an algorithm for link prediction (LP) to enhance the link break provision of the ad hoc on-demand remote protocol (AODV). The proposed algorithm is called the AODV Link Break Prediction (AODVLBP). The AODVLBP prevents link breaks by the use of a predictive measure of the changing signal. The AODVLBP was evaluated using the network simulator version 2.35 (NS2) and compared with the AODV Link prediction (AODVLP) and the AODV routing protocols. The simulation results reveal the effectiveness of AODVLBP in improving network performance in terms of average end-to-end delay, packet delivery ratio, packet overhead ratio, and packet drop-neighbour break.


Since Mobile Ad hoc Network (MANET) has distributed network structure using wireless links, designing efficient security applications has become a critical need. Selfish nodes are nodes that refuse to forward the data from other nodes. The existence of selfish nodes will disturb the normal process of the network, and reduce the network performance. Intrusion Detection System (IDS) is a scheme for detecting any misbehaviors in the network operation by monitoring the traffic flow. Each monitoring node need to execute the IDS module. The common problems encountered by the monitoring nodes are energy depletion, link disconnection, mobility and coverage. Hence the selection of monitoring nodes plays an important role in IDS. This paper develops a technique for deployment and selection of monitoring nodes for detection of selfish attacks. In this technique, the whole network is virtually divided in smaller grid like zones. In each grid, the nodes with higher stability and better coverage are assigned a reward value. A cost metric is derived in terms of energy consumption and computational delay. Then the nodes with minimum cost and high reward are selected as monitoring nodes. By simulation results, it is shown that the proposed technique has reduced detection delay, energy consumption and detection overhead.


Author(s):  
Sihem Aissaoui ◽  
Sofiane Boukli Hacene

Wireless sensor network is a special kind of ad hoc network characterized by high density, low mobility, and the use of a shared wireless medium. This last feature makes the network deployment easy; however, it is prone to various types of attacks such as sinkhole attack, sybil attack. Many researchers studied the effect of such attacks on the network performance and their detection. Classification techniques are some of the most used end effective methods to detect attacks in WSN. In this paper, the authors focus on sinkhole attack, which is one of the most destructive attacks in WSNs. The authors propose an intrusion detection system for sinkhole attack using support vector machines (SVM) on AODV routing protocol. In the different experiments, a special sinkhole dataset is used, and a comparison with previous techniques is done on the basis of detection accuracy. The results show the efficiency of the proposed approach.


Author(s):  
Anupama Sharma ◽  
Abhay Bansal ◽  
Vinay Rishiwal

Purpose Quality communication is a big challenge in mobile ad hoc networks because of a restricted environment for mobile devices, bandwidth-constrained radio connections, random mobility of connected devices, etc. High-quality communication through wireless links mainly depends on available bandwidth, link stability, energy of nodes, etc. Many researchers proposed stability and link quality methods to improve these issues, but they still require optimization. This study aims to contribute towards better quality communication in temporarily formed networks. The authors propose the stable and bandwidth aware dynamic routing (SBADR) protocol with the aim to provide an efficient, stable path with sufficient bandwidth and enough energy hold nodes for all types of quality of service (QoS) data communication. Design/methodology/approach The proposal made in this work used received signal strength from the media access control (MAC) layer to estimate the stability of the radio connection. The proposed path stability model combines the stability of the individual link to compute path stability. The amount of bandwidth available for communication at a specific time on a link is defined as the available link bandwidth that is understood as the maximum throughput of that link. Bandwidth as a QoS parameter ensures high-quality communication for every application in such a network. One other improvement, towards quality data transmission, is made by incorporating residual energies of communicating and receiving nodes in the calculation of available link bandwidth. Findings Communication quality in mobile ad hoc network (MANET) does not depend on a single parameter such as bandwidth, energy, path stability, etc. To address and enhance quality communication, this paper focused on high impact factors, such as path stability, available link bandwidth and energy of nodes. The performance of SBADR is evaluated on the network simulator and compared with that of other routing protocols, i.e. route stability based QoS routing (RSQR), route stability based ad-hoc on-demand distance vector (RSAODV) and Ad-hoc on-demand distance vector (AODV). Experimental outcomes show that SBADR significantly enhanced network performance in terms of throughput, packet delivery ratio (PDR) and normalized control overhead (NCO). Performance shows that SBADR is suitable for any application of MANET having random and high mobility. Research limitations/implications QoS in MANET is a challenging task. To achieve high-quality communication, the authors worked on multiple network parameters, i.e. path stability, available link bandwidth and energy of mobile nodes. The performance of the proposed routing protocol named SBADR is evaluated by a network simulator and compared with that of other routing protocols. Statistical analysis done on results proves significant enhancement in network performance. SBADR is suitable for applications of MANET having random and high mobility. It is also efficient for applications having a requirement of high throughput. Practical implications SBADR shows a significant enhancement in received data bytes, which are 1,709, 788 and 326 more in comparison of AODV, RSAODV and RSQR, respectively. PDR increased by 21.27%, 12.1%, 4.15%, and NCO decreased by 9.67%, 5.93%, 2.8% in comparison of AODV, RSAODV and RSQR, respectively. Social implications Outcomes show SBADR will perform better with applications of MANET such as disaster recovery, city tours, university or hospital networks, etc. SBADR is suitable for every application of MANET having random and high mobility. Originality/value This is to certify that the reported work in the paper entitled “SBADR: stable and bandwidth aware dynamic routing protocol for mobile ad hoc network” is an original one and has not been submitted for publication elsewhere. The authors further certify that proper citations to the previously reported work have been given and no data/tables/figures have been quoted verbatim from the other publications without giving due acknowledgment and without permission of the author(s).


Author(s):  
P. Parthiban ◽  
G. Sundararaj

<p align="justify">The maximization of a networks lifetime is an important part of research in the present scenario. In ad hoc network, the topology of network changes frequently due to the mobility of mobile nodes where the communication is possible without any network infrastructure. Mobile nodes have limited energy resources so that the energy efficient routing should be provided which increases the life time of the network. The existing routing mechanisms do not consider energy of nodes for data transmission. In this paper a novel approach is analyzed to improve the networks lifetime where the data transfer is based on the minimum hop count and residual energy of the mobile nodes. The analysis is carried out by using the network simulator and the simulation results shows that the proposed work provides an energy efficient routing in ad hoc networks. </p>


Mobile Ad-hoc Network (MANET) considered as one of the major important neoteric directions of wireless networks that allows movable devices to communicate with each other’s at any time anywhere. The main distinctive feature of MANET is its operation does not depend on any type of centralized administration. Due to non-truancy of localized management, devices motion and MANET resources scarcity, routing design mechanisms becoming essential problem that faces MANET until yet. Therefore, this article focuses on performance enhancement for one of most notorious interactive routing schemes that is called Ad-hoc On Demand distance Vector (AODV). Where performance refinement for AODV has been achieved via modification of route creation and maintenance processes, conjunction with overhear concept and getting multiple routes for each source - destination pair, in such a way that reduce energy consumption of nodes, avoiding unnecessary control packets, getting a more stable paths among communication nodes and fulfillment of a balanced traffic load among nodes, leading to elongate life time of nodes. Hence, prolonging life time of network. The proposed algorithm is called, Steadiness, balanced Load and Energy efficient for Multiple paths of Overhear AODV (SLE-MOAODV), where route election depending on unified metric called efficiency factor of node (NEF), which composed of parameters of stabilization, traffic load and energy for node. Functioning appraisal and comparison among proposed algorithm (SLE-MOAODV) and original AODV was carried out utilizing network simulator NS2. Outcome of simulation proved that functioning of proposed scheme outdo the original AODV with regard to: ratio of successfully delivered packets, retard time, routing cost and spent energy of nodes.


Sign in / Sign up

Export Citation Format

Share Document