Abstract
Rapid developments in radio technology and processors have led to the emergence of small sensor nodes that provide communication over Wireless Sensor Networks (WSNs). The crucial issues in these networks are energy consumption management and reliable data exchange. Due to the limited resources of sensor nodes, WSNs become a vulnerable target against many security attacks. Thus, energy-aware trust-based techniques have become a powerful tool for detecting nodes’ behavior and providing security solutions in WSN. Clustering-based routings are one of the most effective methods in increasing the WSN performance. In this paper, an Energy-Aware Trust algorithm based on the AODV protocol and Multi-path Routing approach (EATMR) is proposed to improve the security of WSNs. EATMR consists of two main phases: firstly, the nodes are clustered based on the Open-Source Development Model Algorithm (ODMA), and then in the second phase, clustering-based routing is applied. In this paper, the routing process follows the AODV protocol and multi-path routes approach with considering energy-aware trust. Here, the optimal and safe route is determined based on various parameters, namely energy, trust, hop-count, and distance. In this regard, we emphasize the evaluation of node trust using direct trust, indirect trust, and a multi-objective function. The simulation has been performed in MATLAB software in the presence of a Denial of Service (DoS) attack. The simulation results show that EATMR performs better than other approaches such as M-CSO and SQEER in terms of successfully detecting malicious nodes and enhancing network lifetime, energy consumption, and packet delivery ratio.