scholarly journals Nickel in forests – a short review on its distribution and fluxes

2021 ◽  
Vol 48 (2) ◽  
pp. 205-214
Author(s):  
Panagiotis Michopoulos

Abstract The distribution and cycling of nickel (Ni) in forests is greatly affected by their proximity to emission sources of the metal. The throughfall deposition is always richer in Ni than the bulk deposition. It can be inferred that some dry deposition enriches the throughfall. In remote forested areas, the hydrological fluxes of Ni do not differ a lot from those in litterfall. In addition, the current year needles in conifers have higher concentrations than the older needles, a sign of absorption and mobility of the metal. In contrast, near an industrial Ni source the older needles accumulate much more of the metal. The Ni content in bark tissue can be used to map the deposition distribution of the metal around an area (rural or urban). The concentrations of Ni in forest soils is also dependent on their distances from the Ni emission sources and the nature of the soil parent material. The Ni concentrations increase with soil depth due to the geogenic origin of the metal. Low pH greatly enhances the mobility of the metal in soils, much more than the leachability of organic matter.

Author(s):  
Yiwei Zhao ◽  
Liangmin Gao ◽  
Fugeng Zha ◽  
Xiaoqing Chen ◽  
Xiaofang Zhou ◽  
...  

AbstractDue to the special sensitivity of typical ecologically fragile areas, a series of human life, mining, and other activities have a greater impact on the environment. In this study, three coal mines in Ordos City on the Loess Plateau were selected as the study area, and the pollution levels of heavy metals in the area were studied by measuring As, Hg, Cr, Cd, Cu, Ni, and Pb in the soil of 131 sampling points. Combined with the concept of “co-occurrence network” in biology, the level of heavy metals in soil was studied using geostatistics and remote sensing databases. The results showed that the concentrations of Hg, Cr, Ni, Cu, and Pb in more than half of the sampling points were higher than the local environmental background value, but did not exceed the risk control value specified by China, indicating that human factors have a greater influence, while Cd and As elements are mainly affected Soil parent material and human factors influence. Heavy metal elements have nothing to do with clay and silt but have an obvious correlation with gravel. Cd, Pb, As and Ni, Cd, Cr are all positively correlated, and different heavy metals are in space The distribution also reflects the autocorrelation, mainly concentrated in the northeast of the TS mining area and the middle of the PS mining area.


2000 ◽  
Vol 30 (8) ◽  
pp. 1196-1205 ◽  
Author(s):  
J R Williamson ◽  
W A Neilsen

Soil compaction has been considered a principal form of damage associated with logging, restricting root growth and reducing productivity. The rate and extent of soil compaction on skid trails was measured at six field locations covering a range of dry and wet forests. Data was collected for up to 21 passes of a laden logging machine. A similar extent of compaction, averaging 0.17 g·cm-3 increase in total soil bulk density (BD), was recorded for all field sites despite substantial site and soil differences. On average, 62% of the compaction in the top 10 cm of the soil occurred after only one pass of a laden logging machine. The environment under which soils had formed played a major role in determining the BD of the undisturbed soil. Compaction was strongly related to the original BD, forest type, and soil parent material. Soil strengths obtained in the field fell below levels found to restrict root growth. However, reduction in macropores, and the effect of that on aeration and drainage could reduce tree growth. On the wettest soils logged, machine forces displaced topsoils rather than causing compaction in situ. Recommended logging methods and implications for the development of sustainability indices are discussed.


2021 ◽  
Author(s):  
Jianwu LI ◽  
Jinlin Yang ◽  
Ganlin Zhang

Abstract Soil is important contributor to global biogeochemical cycles and often receives anthropogenic Pb contamination. Hainan soil chronosequence developed on basalt had provided a good opportunity to identify and quantify the relative contributions of Pb sources in remote tropical areas. The results revealed that Pb concentrations and isotopic ratios of the soils were clearly affected by anthropogenic source. The Pb concentrations and percentage changes of Pb/Th ratios showed significantly Pb enrichment. The low 206Pb/207Pb values of upper soils indicated a significant addition of extraneous Pb, whereas deeper soils showed a dominantly basaltic source. The 208Pb/206Pb vs. 206Pb/207Pb diagram of soils clearly indicated inputs of parent material and anthropogenic Pb sources. We also calculated the mass fractions of anthropogenic-derived Pb (ƒPbanthropogenic) based on isotope mass balance. The ƒPbanthropogenic values showed a generally decreasing trend with soil depth, implying a significant addition of anthropogenic Pb in top soils. The contribution of anthropogenic Pb in Hainan soil chronosequence highlighted the significance of anthropogenic contamination to soils globally.


2017 ◽  
Vol 9 (5) ◽  
pp. 83
Author(s):  
Ngowari Jaja ◽  
Monday Mbila ◽  
Yong Wang

Silvicultural thinning and burning are common management practices that are widely used to address ecosystem problems such as tree stocking and general forest health. However, high-severity fire has variable effects on soils, resulting in damages which are directly or indirectly reflected on the trace metal chemistry of the soil. This study was conducted to evaluate the trace metal variation at the Bankhead National Forest in Northern Alabama following the silvicultural thinning and burning. The experimental site had treatments consisting of two burning patterns and three levels of thinning as part of an overall treatment of three burning patterns and three levels of thinning applied to nine treatment plots to fit a completely randomized block design experiment. Four treatments sites were used for this study and samples were collected from soil profile pits excavated at representative plots within each treatment. The samples were analyzed for trace metals-As, Cu, Ni, Zn and Pb-using Perkin Elmer 2100 ICP-OES. Post treatment samples indicated that the trace metal concentrations generally decreased with soil depth. Copper, Ni, and Zn at the Pre-burn site gradually increased with depth to a maximum concentration at about 50 cm below the soil surface. Arsenic in the surface horizons increased by 156% in the burn-only sites, 54% in the thin-only treatment, 30% for the burn and thin treatments. Such differences were unlikely due to differences in the geochemistry of the parent material, but likely due to anthropogenic activities and possibly the forest management practices in question.


2020 ◽  
Vol 09 (04) ◽  
pp. 400-409
Author(s):  
Chinonso Millicent Chris-Emenyonu ◽  
Emmanuel Uzoma Onweremadu ◽  
John Didacus Njoku ◽  
Chioma Mildred Ahukaemere ◽  
Benarden Ngozi Aririguzo

1960 ◽  
Vol 40 (2) ◽  
pp. 121-129 ◽  
Author(s):  
J. A. McKeague ◽  
C. F. Bentley

Plastic columns containing a calcareous clay loam soil parent material with and without ground aspen leaves at the surface were maintained under different drainage conditions for 32 months. Distilled water was added at regular intervals. Results of redox potential (Eh) measurements at four depths, leachate analysis and analysis of the soil material are presented.With water table to the surface and a layer of surface leaves, low Eh readings and appreciable iron movement resulted. In a column with fluctuating water table and surface leaves, raising the water table brought about a decrease in the Eh of the soil below the water table. Height of water table had no effect on the Eh of a column which had no leaves at the surface. In columns where the soil material was mixed with quartz sand, leaching brought about marked downward movement of silt and clay size particles. Apart from the removal of soluble salts, there was little measurable change in columns which had no admixture of sand.


Geoderma ◽  
2019 ◽  
Vol 338 ◽  
pp. 247-258 ◽  
Author(s):  
Yun Zhang ◽  
Mulualem Tigabu ◽  
Zhigang Yi ◽  
Huitong Li ◽  
Zheng Zhuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document