scholarly journals Gravelling Test for Rail Windshield

2019 ◽  
Vol 26 (1) ◽  
pp. 7-15
Author(s):  
Adam Bilar ◽  
Paweł Boguszewicz ◽  
Witold Perkowski

Abstract During preliminary tests of locomotive windshield resistance to gravelling, according to the applicable standard PN-EN 15152:2007, carried out in the Institute of Aviation, the problem of the projectile overturning after leaving the cannon barrel was detected. Three tests recorded with a high-speed camera are presented in this article. This problem was found to be due to the incorrect projectile geometry. In order to stabilise the trajectory of the projectile, four types of projectiles were made using military experience. All of them meet relevant test conditions from the point of view of the test piece (locomotive windshield). The best projectile modification was obtained in the tests with an average deviation of the expected impact angle of 11° compared to 75° for a projectile made exactly according to the guidelines of the standard. Each of 22 modified projectiles hit the test piece with the tip, while out of the 12 original projectiles only 4 hit the test piece with the tip. The impact test results confirm that it is possible to perform a gravelling test according to the standard concept, but it seems necessary to clarify the standard requirements and to modify the projectile shape. The article contains a proposal for the projectile modification and highlights inaccuracies in the standard concerning the gravelling test.

2020 ◽  
Vol 14 ◽  

The aim of the study was to research the behavior of the rubber-metal body mounting under various modeling options and to select the optimal, from the point of view of ensuring the accuracy of the results in the crash tests simulations. Body supports provide a link between the body and the car frame, and this has a critical effect on the impact test results of the car. The article discusses various options for modeling the body mounting by the degree of simplification from the simplest model with a rigid connection between the body and the frame to the model that takes into account the non-linearity of the stiffness characteristics of the supports, contact interaction between parts of the mounting and its surrounding parts, tension of the supports and failure. The results of virtual tests of a car with various options for modeling mountings were compared with the results of real tests. As a result of the study, a methodology for modeling the body supports was developed, which allows providing the necessary measurement error in virtual crash test modeling.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Hidekazu Takazawa ◽  
Kazuma Hirosaka ◽  
Katsumasa Miyazaki ◽  
Norihide Tohyama ◽  
Naomi Matsumoto

A new Japanese nuclear regulation involves estimating the possible damage to plant structures due to intentional aircraft impact. The effect of aircraft impact needs to be considered in the existing nuclear power plants. The structural damage and fuel dispersion behavior after aircraft impact into plant structures can be evaluated using finite element analysis (FEA). FEA needs validated experimental data to determine the reliability of the results. In this study, an analysis method was validated using a simple model such as a cylindrical tank. Numerical simulations were conducted to evaluate the impact and dispersion behavior of a water-filled cylindrical tank. The simulated results were compared with the test results of the VTT Technical Research Centre of Finland (VTT). The simulations were carried out using a multipurpose FEA code LS-DYNA®. The cylindrical tank was modeled using a shell element, and the tank water was modeled using smoothed particle hydrodynamics (SPH) elements. First, two analysis models were used to evaluate the effect of the number of SPH elements. One had about 300,000 SPH elements and the other had 37,000 SPH elements. The cylindrical tank ruptured in the longitudinal direction after crashing into a rigid wall, and the filled water dispersed. There were few differences in the simulated results when using different numbers of SPH elements. The VTT impact test was simulated with an arbitrary Lagrangian-Eulerian (ALE) element to consider the air drag. The analytical dispersion pattern and history of dispersion velocity ratio agreed well with the impact test results.


2018 ◽  
Vol 225 ◽  
pp. 06011 ◽  
Author(s):  
Ismail Ali Bin Abdul Aziz ◽  
Daing Mohamad Nafiz Bin Daing Idris ◽  
Mohd Hasnun Arif Bin Hassan ◽  
Mohamad Firdaus Bin Basrawi

In high-speed gear drive and power transmission, system impact failure mode always occurs due to the sudden impact and shock loading during the system in running. Therefore, study on the amount of impact energy that can be absorbed by a gear is vital. Impact test equipment has been designed and modelled for the purpose to study the impact energy on gear tooth. This paper mainly focused on Finite Element Analysis (FEA) of impact energy that occurred during simulation involving the impact test equipment modelling. The simulation was conducted using Abaqus software on critical parts of the test equipment to simulate the impact event and generate impact data for analysis. The load cell in the model was assumed to be free fall at a certain height which gives impact load to the test gear. Three different type of material for the test gear were set up in this simulation. Results from the simulation show that each material possesses different impact energy characteristic. Impact energy values increased along with the height of load drop. AISI 1040 were found to be the toughest material at 3.0m drop that could withstand up to 44.87N.m of impact energy. These data will be used to validate data in physical experiments in further study.


2012 ◽  
Vol 445 ◽  
pp. 189-194
Author(s):  
Enver Bulent Yalcin ◽  
Volkan Gunay ◽  
Muzeyyen Marsoglu

The study presents the need for instrumented testing to optimizing materials against impact forces. The objective of the study is how the impact behaviour of composite materials is investigated by slow and high speed impact tests. Instron Dynatup 9250HV and Instron Dynatup 8150 Impact test machines (Fig.1.) are used which are located in TUBITAK-MRC, Materials Institute , Impact Test Laboratory". The damage process in composite materials under low and high velocity impact loading and the impact energy-displacement properties of the composite materials were investigated. Composite samples were produced by woven fabrics. The results are given as graphs and tables. The Impulse Data Acquisition software is used to send the data to computer.


1994 ◽  
Vol 116 (4) ◽  
pp. 770-777 ◽  
Author(s):  
Yong-Du Jun ◽  
Widen Tabakoff

This paper presents an investigation of numerical simulation for a dilute particle laden flow (laminar) over in-line tube banks. Particles behavior of two different sizes and density (100 μm sand and 40 μm fly ash) is demonstrated through the present study for a fixed geometry and flow condition, that is, a square in-line tube bank of two rows deep with pitch-to-diameter ratio of two at Reynolds number 400. Dilute particulate flow assumption is used and the drag force is considered as the only external force term that affects the particles behavior in the flow. Experimental rebounding data and semiempirical equation for the erosion estimation are used. It was found through the present simulation that the particles behavior of the different sizes and density in tube bank system is quite different in their trajectories, impact and the erosion pattern. The protective role of the first row of cylinders could be supported with respect to the particles collision on the cylinder but not necessarily to the erosion point of view. Also the information at impact such as the impact velocity and the impact angle which affect the erosion (Tabakoff et al., 1988) can be estimated by using the numerical simulation shown in the present study.


2021 ◽  
Vol 5 (1) ◽  
pp. 11-20
Author(s):  
Mardy Suhandani ◽  
Poppy Puspitasari ◽  
Jeefferie Abd Razak

The automotive and aviation fields require engineering materials that can save and optimise fuel consumption. Unique characteristics of lightweight, higher strength to weight ratio, good corrosion resistance, and good castability are indispensable for castable metal such as Silicon Aluminium (Al-Si). The mechanical properties of Al-Si could be further improved through the addition of Cobalt Oxide (CoO) nanoparticles during the casting process. The importance and purpose of this study were to determine the impact toughness, hardness and fracture morphology of Al-Si metal alloy filled with 0.015 wt.% CoO nanofiller at the various melting temperature of 750 °C, 800 °C and 850 °C. The stir casting method was utilised considering the most appropriate method for mixing nanoparticles powder into the Al-Si matrix. Three test specimens were prepared for each temperature variation. Impact testing using the Charpy method (ASTM E23-56 T) and hardness testing using Rockwell Superficial HR15T and fracture morphology obtained from impact testing fractures were performed accordingly. The impact test results showed that the Al-Si added with 0.015% CoO at 800 °C of melting temperature possessed the highest impact toughness value of 25.111 x 10-3 Joule mm-2 than the other variations. The hardness test results showed that Al-Si added 0.015% CoO with a melting temperature of 850 °C had the highest hardness value of 79.52 HR15T. The fracture morphology of the impact test in all specimens shows uniform brittle fracture characteristics. It is found that the melting temperature during the stir-casting process of Al-Si has played a significant role in influencing the resulted properties of Al-Si filled CoO nanoparticles metal matrix composites. The selection of an accurate melting temperature for the stir casting process will affect the resulted properties of produced metal composites.


2021 ◽  
Vol 71 (6) ◽  
pp. 737-747
Author(s):  
Hussein Bassindowa ◽  
Bakhtier Farouk ◽  
Steven B. Segletes

A computational study of a projectile (either 2024 aluminum or TiAl6V4 titanium alloy) impacting a plate (either titanium alloy or aluminum) is presented in this paper. Projectile velocity (ranging from 250 m/s to 1500 m/s) with varying impact angles are considered. The presence of ricochet (if any) is identified over the ranges of the projectile velocity and impact angle considered. For the cases where ricochet is identified, the ricochet angle and velocity are predicted as functions of the incident angle and the incident velocity. The numerical results are compared with an analytical solution of the ricochet problem. The analytical solutions are from a model developed to predict the ballistic ricochet of a projectile (projectile) penetrator. The dynamics and the deformation of an aluminum (or a titanium alloy) projectile impacting on a finite thickness titanium alloy (or aluminum) plate are simulated. The current work is interesting in that it looks in the field of ballistics of different material combinations than are traditionally studied. The present simulations based on detailed material models for the aluminum and the titanium alloy and the impact physics modelling features in the LS-DYNA code provide interesting details regarding the projectile/plate deformations and post-impact projectile shape and geometry. The present results indicate that for no cases (for specified incoming velocities and impact angles considered) can an aluminum projectile penetrate a titanium alloy plate. The ricochet ‘mode predictions ‘obtained from the present simulations agree well with the ricochet ‘mode predictions’ given in an analytical model.


Author(s):  
Patricia Llana ◽  
Karina Jacobsen ◽  
Richard Stringfellow

Abstract Research to develop new technologies for increasing the safety of passengers and crew in rail equipment is being directed by the Federal Railroad Administration’s (FRA’s) Office of Research, Development, and Technology. Two crash energy management (CEM) components that can be integrated into the end structure of a locomotive have been developed: a push-back coupler (PBC) and a deformable anti-climber (DAC). These components are designed to inhibit override in the event of a collision. The results of vehicle-to-vehicle override, where the strong underframe of one vehicle, typically a locomotive, impacts the weaker superstructure of the other vehicle, can be devastating and compromise the occupied space. The objective of this research program is to demonstrate the feasibility of these components in improving crashworthiness for equipped locomotives in a wide range of potential collisions, including collisions with conventional locomotives, conventional cab cars, and freight equipment. Concerns have been raised in discussions with industry that push-back couplers may trigger prematurely, or may require replacement due to unintentional activation as a result of loads experienced during service and coupling. PBCs are designed with trigger loads which exceed the expected maximum service and coupling loads experienced by conventional couplers. Analytical models are typically used to determine these trigger loads. Two sets of coupling tests have been conducted that validate these models, one with a conventional locomotive equipped with conventional draft gear and coupler, and another with a conventional locomotive retrofit with a PBC. These tests provide a basis for comparing the coupling performance of a CEM-equipped locomotive with that of a conventional locomotive, as well as confirmation that the PBC triggers at a speed well above typical coupling speeds and at the designed force level. In addition to the two sets of coupling tests, two vehicle-to-vehicle collision tests where one of the vehicles is a CEM-equipped locomotive and a train-to-train collision test are planned. This arrangement of tests allows for evaluation of CEM-equipped locomotive performance, and enables comparison of actual collision behavior with predictions from computer models in a range of collision scenarios. This paper describes the results of the most recent test in the research program: the first vehicle-to-vehicle impact test. In this test, a CEM-equipped locomotive impacted a stationary conventional locomotive. The primary objective of the test was to demonstrate the effectiveness of the components of the CEM system in working together to absorb impact energy and to prevent override in a vehicle-to-vehicle collision scenario. The target impact speed was 21 mph. The actual speed of the test was 19.3 mph. Despite the lower test speed, the CEM system worked exactly as designed, successfully absorbing energy and keeping the vehicles in-line, with no derailment and no signs of override. The damage sustained during the collision is described. Prior to the tests, a finite element model was developed to predict the behavior of the CEM components and test vehicles during the impact. The test results are compared to pre-test model predictions. The model was updated with the conditions from the test, resulting in good agreement between the updated model and the test results. Plans for future full-scale collision tests are discussed.


Author(s):  
S. N. Huang ◽  
S. S. Shiraga ◽  
L. M. Hay

This paper compares transportation mockup cask impact test results onto real surfaces with FEA numerical simulation results. The impact test results are from a series of cask impact tests that were conducted by Sandia National Laboratories (Gonzales 1987). The Sandia tests were conducted with a half-scale instrumented cask mockup impacting an essentially unyielding surface, in-situ soil, concrete runways, and concrete highways. The cask numerical simulations with these same surfaces are conducted with ABAQUS/Explicit, Version 5.8, The results are then compared and evaluated to access the viability of using numerical simulation to predict the impact behavior of transportation casks under hypothetical accident conditions.


2020 ◽  
Vol 27 ◽  
pp. 37-41
Author(s):  
Josef Daniel ◽  
Jan Grossman ◽  
Vilma Buršíková ◽  
Lukáš Zábranský ◽  
Pavel Souček ◽  
...  

Coated components used in industry are often exposed to repetitive dynamic impact load. The dynamic impact test is a suitable method for the study of thin protective coatings under such conditions. Aim of this paper is to describe the method of dynamic impact testing and the novel concepts of evaluation of the impact test results, such as the impact resistance and the impact deformation rate. All of the presented results were obtained by testing two W-B-C coatings with different C/W ratio. Different impact test results are discussed with respect to the coatings microstructure, the chemical and phase composition, and the mechanical properties. It is shown that coating adhesion to the HSS substrate played a crucial role in the coatings’ impact lifetime.


Sign in / Sign up

Export Citation Format

Share Document