damage process
Recently Published Documents


TOTAL DOCUMENTS

624
(FIVE YEARS 144)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
pp. 002199832110605
Author(s):  
Niels van Hoorn ◽  
Christos Kassapoglou ◽  
Sergio Turteltaub ◽  
Wouter van den Brink

Impact experiments of thick fabric carbon/epoxy laminate specimens, with small thickness ratio, are conducted at distinct energy levels and thicknesses to characterise the damage process. These specimens and loading conditions are representative of a new generation of critical structural components in aviation, such as wing spars, landing gear beams and fittings, that are increasingly being made entirely from composites. The tests address the need to better understand the damage process for specimens with a small thickness ratio since existing experimental impact data for large thickness ratio (thin laminates) may not be directly applicable. Two energy levels, two different fabric layups and two impact methods (drop-weight and gas-cannon) were used. Data from high-speed cameras were processed in a novel way, providing the force during impact. C-scans and micrographs were used to characterise damage. The results show that specimens with a thickness ratio of 5 (20 mm thick) experience more bending compared to specimens with a ratio 2.5 (40 mm thick). For gas-cannon impacts, this results in a higher delaminated area. The drop-weight impacts show almost no differences in damage size for the thickness range analysed. The influence of layup on the global impact response is negligible, but locally it can result in significant variations in dent depth. The dent depth scales linearly with the impact energy and the delaminated area linearly with the impact velocity. There is no clear correlation between the compression-after-impact failure mechanisms and the residual strength. Impact damage, at the current energy levels, showed a minimal reduction of residual strength.


2021 ◽  
pp. 1-27
Author(s):  
Yanlong Li ◽  
Junhao Chen ◽  
Lifeng Wen ◽  
Junzhong Wang ◽  
Kangping Li

It is important to evaluate the internal damage of concrete under load conditions in order to evaluate its stability and usability for building applications. In this study, the uniaxial compression of concrete with initial defect was performed, and the internal damage of concrete was monitored by acoustic emission(AE) technology in real time to study the damage process and mechanism. The mechanical properties of concrete specimens with different initial defect were determined, and the cumulative impact count of AE was recorded. The response characteristics of AE in the process of concrete compression and damage were obtained. According to the analysis of the influence of the initial defect on the Kaiser effect and since the irreversibility of the AE process is related to the degree of damage caused by the material under the pre-load, it was determined that the initial defect will aggravate the damage inside the concrete under the same load level. Based on the statistics and analysis of the Weibull cumulative function, the correlation between AE parameters and damage variables was discussed.


Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 451-458
Author(s):  
Kęstutis ŠPAKAUSKAS ◽  
Paulius GRIŠKEVIČIUS ◽  
Kazimieras PETKEVIČIUS ◽  
Vitalis LEIŠIS

The aim of the present work is to compare the interlaminar shear strength and fracture toughness of glued carbon fiber rods obtained using different experimental approaches and provide the effective way to characterise the interlaminar properties for reliable simulation of the delamination. Five different test methods (tension, single shear test, and double shear test, mode I and mode II delamination tests) were performed. Using the explicit LS-DYNA code the finite element model capable of simulating the damage process of bonded connection was developed. The interlaminar connection and delamination criteria were calibrated using the parameter identification methodology implemented in LS-OPT optimization tool.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8124
Author(s):  
Deyi Gao ◽  
Shuxun Sang ◽  
Shiqi Liu ◽  
Jishi Geng ◽  
Tao Wang ◽  
...  

It is of great significance to ascertain the mechanical characteristics and deformation laws of tectonic coal that is under complex stress conditions for safe production, but the targeted research in this area is still insufficient at present. This paper performed triaxial tests under cyclic multi-level loading at different rates by using an MTS-815 Rock Mechanics Testing System. The strain characteristics, elastic modulus and energy evolution were obtained in order to explore the effects of the mechanism of loading rate on the evolution of deformation and energy parameters of tectonic coal. The results showed that the irreversible strain and plastic energy increased exponentially with the increase in the deviatoric stress, but the growth rate decreased with the increase in loading rate. Furthermore, the elastic strain increased linearly and the growth rate was essentially unaffected by the loading rate. During the compaction stage, the variation of each parameter was not sensitive to the loading rate; during the elastic and damage stage, the rate increase inhibited secondary defect propagation and improved rock strength. In addition, the stepwise and cumulative energy ratio was defined in order to describe the energy distribution during cyclic loading and unloading. It was found that the decrease in the loading rate was beneficial to the transformation of the total energy into plastic energy. The elastic modulus was the most sensitive to sample damage, but the energy density evolution was able to be used to describe the deformation damage process of tectonic coal in more detail. These findings provide important theoretical support for the tectonic coal deformation law and action mechanism in the damage process that occurs under complex stress conditions.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7429
Author(s):  
Jing Zhou ◽  
Zilong Zhou ◽  
Yuan Zhao ◽  
Xin Cai

Measuring accurate wave velocity change is a crucial step in damage assessment of building materials such as rock and concrete. The anisotropy caused by the generation of cracks in the damage process and the uncertainty of the damage level of these building materials make it difficult to obtain accurate wave velocity change. We propose a new method to measure the wave velocity change of anisotropic media at any damage level by full-waveform correlation. In this method, the anisotropy caused by the generation of cracks in the damage process is considered. The accuracy of the improved method is verified by numerical simulation and compared with the existing methods. Finally, the proposed method is applied to measure the wave velocity change in the damage process of rock under uniaxial compression. We monitor the failure process of rock by acoustic emission (AE) monitoring system. Compared with the AE ringing count, the result of damage evaluation obtained by the proposed method is more accurate than the other two methods in the stage of increasing rock heterogeneity. These results show that the proposed method is feasible in damage assessment of building materials such as rock and concrete.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6161
Author(s):  
Guodong Li ◽  
Jiarui Gu ◽  
Zhengyi Ren ◽  
Fengnian Zhao ◽  
Yongquan Zhang

This study presented evaluation of a concrete damage process by the acoustic emission (AE) technique under uniaxial multi-step compressive loading procedure combined with digital image correlation (DIC). The results showed that AE elastic wave velocity had good stress dependence in the damage process of concrete specimens with different sizes (cube, prism) and coarse aggregate characteristics (volume fraction, maximum size), and the effects of specimen sizes and coarse aggregate characteristics on the stress dependence can be nearly neglected. The standard deviation of 32 AE elastic wave velocities was used as the criterion to evaluate the relative stress ratio of concrete under different damage states, and the damage process of concrete was divided into three damage stages according to this criterion. When the standard deviation is below 70, in the range of 70 to 1700, and greater than 1700, the concrete damage process is defined as steady damage process, accelerated damage process and buckling damage process, respectively. The accuracy of the presented evaluation methodology was demonstrated by comparative results with digital image correlation. The results indicate that the standard deviation of AE elastic wave velocities can potentially serve as a reliable, convenient, and non-destructive evaluation criterion of concrete damage state under uniaxial compressive loading.


2021 ◽  
pp. 147592172110446
Author(s):  
Claudia Barile ◽  
Caterina Casavola ◽  
Giovanni Pappalettera ◽  
Vimalathithan Paramsamy Kannan

Signal-based acoustic emission data are analysed in this research work for identifying the damage modes in carbon fibre–reinforced plastic (CFRP) composites. The research work is divided into three parts: analysis of the shifting in the spectral density of acoustic waveforms, use of waveform entropy for selecting the best wavelet and implementation of wavelet packet transform (WPT) for identifying the damage process. The first two methodologies introduced in this research work are novel. Shifting in the spectral density is introduced in analogous to ‘flicker noise’ which is popular in the field of waveform processing. The entropy-based wavelet selection is refined by using quadratic Renyi’s entropy and comparing the spectral energy of the dominating frequency band of the acoustic waveforms. Based on the method, ‘dmey’ wavelet is selected for analysing the waveforms using WPT. The slope values of the shifting in spectral density coincide with the results obtained from WPT in characterising the damage modes. The methodologies introduced in this research work are promising. They serve the purpose of identifying the damage process effectively in the CFRP composites.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257345
Author(s):  
Wei Wang ◽  
Xiaorong Xue ◽  
Weisheng Chen ◽  
Xiaoyan Xue

Infrasonic signals measured before an earthquake carry information about the size and development speed of the source fracture, the stress at the fracture site and the elastic properties of the geologic medium. The infrasonic signal has a stable time scale, and compared with other precursors, infrasound has a unique sensitivity to earthquake disasters. However, to date, there has been no relevant theoretical research on the mechanism of infrasonic anomalies, and information on the development of fracture sources cannot be obtained from these characteristics, which makes the application of this anomaly in earthquake prediction challenging. In this study, we obtained the characteristics of short-term and impending infrasonic anomalies based on the infrasound data of more than 100 strong earthquakes. With a range of elastic medium models with a large number of fractures, we completed the theoretical simulation of the formation process of infrasonic precursors during the formation of the main fractures, analyzed the physical evolution of acoustic signals when cracks are generated, and quantitatively described the stages of large fracture formation caused by the initiation and propagation of seismic cracks. Specifically, this study revealed the causes of various and complex forms of infrasonic precursors near the critical point and the causes of the time- and space-dependent characteristics of these precursors, such as a noticeable attenuation of the pulse number, a low frequency and a large amplitude, which verified the effectiveness of infrasonic anomalies as strong earthquake precursors.


Sign in / Sign up

Export Citation Format

Share Document