scholarly journals p1-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning

2019 ◽  
Vol 2019 (3) ◽  
pp. 191-209 ◽  
Author(s):  
Se Eun Oh ◽  
Saikrishna Sunkam ◽  
Nicholas Hopper

Abstract Recent advances in Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art machine learning techniques across a wide range of application, as well as automating the feature engineering process. In this paper, we broadly study the applicability of deep learning to website fingerprinting. First, we show that unsupervised DNNs can generate lowdimensional informative features that improve the performance of state-of-the-art website fingerprinting attacks. Second, when used as classifiers, we show that they can exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we investigate which site-level features of a website influence its fingerprintability by DNNs.

Author(s):  
Kayalvizhi S. ◽  
Thenmozhi D.

Catch phrases are the important phrases that precisely explain the document. They represent the context of the whole document. They can also be used to retrieve relevant prior cases by the judges and lawyers for assuring justice in the domain of law. Currently, catch phrases are extracted using statistical methods, machine learning techniques, and deep learning techniques. The authors propose a sequence to sequence (Seq2Seq) deep neural network to extract catch phrases from legal documents. They have employed several layers, namely embedding layer, encoder-decoder layer, projection layer, and loss layer to build the deep neural network. The methodology is evaluated on IRLeD@FIRE-2017 dataset and the method has obtained 0.787 and 0.607 as mean average precision and recall scores respectively. Results show that the proposed method outperforms the existing systems.


2020 ◽  
Vol 79 (41-42) ◽  
pp. 30387-30395
Author(s):  
Stavros Ntalampiras

Abstract Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer’s standardized categorization considering both sound’s identity and the respective listening context.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1256 ◽  
Author(s):  
Patryk Ziolkowski ◽  
Maciej Niedostatkiewicz

Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class. Predictable compressive strength of concrete is essential for concrete structure utilisation and is the main feature of its safety and durability. Recently, machine learning is gaining significant attention and future predictions for this technology are even more promising. Data mining on large sets of data attracts attention since machine learning algorithms have achieved a level in which they can recognise patterns which are difficult to recognise by human cognitive skills. In our paper, we would like to utilise state-of-the-art achievements in machine learning techniques for concrete mix design. In our research, we prepared an extensive database of concrete recipes with the according destructive laboratory tests, which we used to feed the selected optimal architecture of an artificial neural network. We have translated the architecture of the artificial neural network into a mathematical equation that can be used in practical applications.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


2020 ◽  
Author(s):  
Petter Jakobsen ◽  
Enrique Garcia-Ceja ◽  
Michael Riegler ◽  
Lena Antonsen Stabell ◽  
Tine Nordgreen ◽  
...  

ABSTRACTCurrent practice of assessing mood episodes in affective disorders largely depends on subjective observations combined with semi-structured clinical rating scales. Motor activity is an objective observation of the inner physiological state expressed in behavior patterns. Alterations of motor activity are essential features of bipolar and unipolar depression. The aim was to investigate if objective measures of motor activity can aid existing diagnostic practice, by applying machine-learning techniques to analyze activity patterns in depressed patients and healthy controls. Random Forrest, Deep Neural Network and Convolutional Neural Network algorithms were used to analyze 14 days of actigraph recorded motor activity from 23 depressed patients and 32 healthy controls. Statistical features analyzed in the dataset were mean activity, standard deviation of mean activity and proportion of zero activity. Various techniques to handle data imbalance were applied, and to ensure generalizability and avoid overfitting a Leave-One-User-Out validation strategy was utilized. All outcomes reports as measures of accuracy for binary tests. A Deep Neural Network combined with random oversampling class balancing technique performed a cut above the rest with a true positive rate of 0.82 (sensitivity) and a true negative rate of 0.84 (specificity). Accuracy was 0.84 and the Matthews Correlation Coefficient 0.65. Misclassifications appear related to data overlapping among the classes, so an appropriate future approach will be to compare mood states intra-individualistic. In summary, machine-learning techniques present promising abilities in discriminating between depressed patients and healthy controls in motor activity time series.


Sign in / Sign up

Export Citation Format

Share Document