Vibration
Latest Publications


TOTAL DOCUMENTS

127
(FIVE YEARS 105)

H-INDEX

5
(FIVE YEARS 4)

Published By Mdpi Ag

2571-631x

Vibration ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 59-79
Author(s):  
Anurag Dubey ◽  
Vivien Denis ◽  
Roger Serra

Health surveillance in industries is an important prospect to ensure safety and prevent sudden collapses. Vibration Based Structure Health Monitoring (VBSHM) is being used continuously for structures and machine diagnostics in industry. Changes in natural frequencies are frequently used as an input parameter for VBSHM. In this paper, the Frequency Shift Coefficient (FSC) is used for the assessment of various numerical damaged cases. An FSC-based algorithm is employed in order to estimate the positions and severity of damages using only the natural frequencies of healthy and unknown (damaged) structures. The study focuses on cantilever beams. By considering the minimization of FSC, damage positions and severity are obtained. Artificially damaged cases are assessed by changes in its positions, the number of damages and the size of damages along with the various parts of the cantilever beam. The study is further investigated by considering the effect of uncertainty on natural frequencies (0.1%, 0.2% and 0.3%) in damaged cases, and the algorithm is used to estimate the position and severity of the damage. The outcomes and efficiency of the proposed FSC based method are evaluated in order to locate and quantify damages. The efficiency of the algorithm is demonstrated by locating and quantifying double damages in a real cantilever steel beam using vibration measurements.


Vibration ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 20-58
Author(s):  
Xiaoquan Wang ◽  
Ricardo A. Perez ◽  
Bret Wainwright ◽  
Yuting Wang ◽  
Marc P. Mignolet

The focus of this investigation is on reduced order models (ROMs) of the nonlinear geometric response of structures that are built nonintrusively, i.e., from standard outputs of commercial finite element codes. Several structures with atypical loading, boundary conditions, or geometry are considered to not only support the broad applicability of these ROMs but also to exemplify the different steps involved in determining an appropriate basis for the response. This basis is formed here as a combination of linear vibration modes and dual modes, and some of the steps involved follow prior work; others are novel aspects, all of which are covered in significant detail to minimize the expertise needed to develop these ROMs. The comparisons of the static and dynamic responses of these structures predicted by the ROMs and by the underlying finite element models demonstrate the high accuracy that can be achieved with the ROMs, even in the presence of significant nonlinearity.


Vibration ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-19
Author(s):  
Çağlar Uyulan

Modelling errors and robust stabilization/tracking problems under parameter and model uncertainties complicate the control of the flexible underactuated systems. Chattering-free sliding-mode-based input-output control law realizes robustness against the structured and unstructured uncertainties in the system dynamics and avoids the excitation of unmodeled dynamics. The main purpose of this paper was to propose a robust adaptive solution for stabilizing and tracking direct-drive (DD) flexible robot arms under parameter and model uncertainties, as well as external disturbances. A lightweight robot arm subject to external and internal dynamic effects was taken into consideration. The challenges were compensating actuator dynamics with the inverter switching effects and torque ripples, stabilizing the zero dynamics under parameter/model uncertainties and disturbances while precisely tracking the predefined reference position. The precise control of this kind of system demands an accurate system model and knowledge of all sources that excite unmodeled dynamics. For this purpose, equations of motion for a flexible robot arm were derived and formulated for the large motion via Lagrange’s method. The goals were determined to achieve high-speed, precise position control, and satisfied accuracy by compensating the unwanted torque ripple and friction that degrades performance through an adaptive robust control approach. The actuator dynamics and their effect on the torque output were investigated due to the transmitted torque to the load side. The high-performance goals, precision and robustness issues, and stability concerns were satisfied by using robust-adaptive input-output linearization-based control law combining chattering-free sliding mode control (SMC) while avoiding the excitation of unmodeled dynamics. The following highlights are covered: A 2-DOF flexible robot arm considering actuator dynamics was modelled; the theoretical implication of the chattering-free sliding mode-adaptive linearizing algorithm, which ensures robust stabilization and precise tracking control, was designed based on the full system model including actuator dynamics with computer simulations. Stability analysis of the zero dynamics originated from the Lyapunov theorem was performed. The conceptual design necessity of nonlinear observers for the estimation of immeasurable variables and parameters required for the control algorithms was emphasized.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 906-937
Author(s):  
Mpho Podile ◽  
Daramy Vandi Von Kallon ◽  
Bingo Masiza Balekwa ◽  
Michele Cali

Rail–wheel interaction is one of the most significant and studied aspects of rail vehicle dynamics. The vibrations caused by rail–wheel interaction can become critical when the radial, lateral and longitudinal loads of the vehicle, cargo and passengers are experienced while the vehicle is in motion along winding railroad paths. This mainly causes an excessive production of vibrations that may lead to discomfort for the passengers and shortening of the life span of the vehicle’s body parts. The use of harmonic response analysis (HRA) shows that the wheel experiences high vibrational amplitudes from both radial and lateral excitation. The present study describes a numerical and experimental design procedure that allows mitigation of the locomotive wheel resonance during radial and lateral excitations through viscoelastic layers. It is proven that these high frequencies can be reduced through the proper design of damping layer mechanisms. In particular, three parametric viscoelastic damping layer arrangements were analyzed (on the web of both wheel sides, under the rim of both wheel sides and on the web and under the rim of both wheel sides). The results demonstrate that the correct design and dimensions of these viscoelastic damping layers reduce the high-amplitude resonance peaks of the wheel successfully during both radial and lateral excitation.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 893-905
Author(s):  
Stefano Marelli ◽  
Delphine Chadefaux ◽  
Katie Goggins ◽  
Tammy Eger ◽  
Diego Scaccabarozzi ◽  
...  

Many workers are exposed to foot-transmitted vibration, which can lead to the development of vibration-induced white foot: a debilitating condition with neurological, vascular and osteoarticular symptoms. To design effective prevention mechanisms (i.e., boots and insoles) for isolating workers from vibration exposure, continued model development of the foot’s biodynamic response in different positions is necessary. This study uses a previously developed model of the foot–ankle system (FAS) to investigates how altering the center of pressure (COP) location can change the biodynamic response of the FAS to standing vibration exposure. Formerly published experimental responses for apparent mass and transmissibility at five anatomical locations in three COP positions were used to optimize the model. Differences occurred with the Kelvin–Voigt elements used to represent the soft tissues of the foot sole: at the heel, the distal head of the metatarsals and distal phalanges. The stiffness increased wherever the COP was concentrated (i.e., forward over the toes or backward over the heel). The variability of the model parameters was always greatest when the COP was concentrated in the heel. This suggests future FAS models need to more clearly address how the soft tissue of the plantar fat pad is modelled.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 865-892
Author(s):  
Michalis Hadjioannou ◽  
Aldo E. McKay ◽  
Phillip C. Benshoof

This paper summarizes the findings of two full-scale blasts tests on a steel braced frame structure with composite floor slabs, which are representative of a typical office building. The aim of this research study was to experimentally characterize the behavior of conventionally designed steel braced frames to blast loads when enclosed with conventional and blast-resistant façade. The two tests involved a three-story, steel braced frame with concentrical steel braces, which are designed to resist typical gravity and wind loads without design provisions for blast or earthquake loads. During the first blast test, the structure was enclosed with a typical, non-blast-resistant, curtainwall façade, and the steel frame sustained minimal damage. For the second blast test, the structure was enclosed with a blast-resistant façade, which resulted in higher damage levels with some brace connections rupturing, but the building did not collapse. Observations from the test program indicate the appreciable reserved capacity of steel brace frame structures to resist blast loads.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 853-864
Author(s):  
Allan de Barros ◽  
Ahmed Galai ◽  
Amir Ebrahimi ◽  
Babette Schwarz

The vibration on the stator core of hydrogenerators caused by electromagnetic forces is an important factor affecting the reliability and long-lasting operation of a machine. For a suitable addressment of the problem, it is necessary to accurately predict the eigenmodes and eigenfrequencies of the mechanical system. However, different results for the eigenfrequencies can be achieved depending on the applied model and material parameters. This work contributes to solving this issue by investigating the impact of different input parameters on the eigenmodes and eigenfrequencies calculated by analytical and numerical models. The results are discussed and compared to measurements performed on a prototyped 732 kVA hydrogenerator.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 836-852
Author(s):  
Chiara Bedon ◽  
Salvatore Noè

The vibration performance of pedestrian structures has attracted the attention of several studies, especially with respect to unfavourable operational conditions or possible damage scenarios. Specific vibration comfort levels must be commonly satisfied in addition to basic safety requirements, depending on the class of use, the structural typology and the materials involved. Careful consideration could be thus needed at the design stage (in terms of serviceability and ultimate limit state requirements), but also during the service life of a given pedestrian system. As for structural health monitoring purposes, early damage detection and maintenance interventions on constructed facilities, vibration frequency estimates are also known to represent a preliminary but rather important diagnostic parameter. In this paper, the attention is focused on the post-breakage vibration analysis of in-service triple laminated glass (LG) modular units that are part of a case-study indoor walkway in Italy. On-site non-destructive experimental methods and dynamic identification techniques are used for the vibration performance assessment of a partially cracked LG panel (LGF), compared to an uncracked modular unit (LGU). Equivalent material properties are derived to account for the fractured glass layer, and compared with literature data for post-breakage calculations. The derivation of experimental dynamic parameters for the post-breakage mechanical characterization of the structural system is supported by finite element (FE) numerical models and parametric frequency analyses.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 822-835
Author(s):  
Megan E. Govers ◽  
Alexander J. Nolan ◽  
Marwan Hassan ◽  
Michele L. Oliver

Operators of heavy equipment are often exposed to high levels of whole-body vibration (WBV), which has been associated with a variety of adverse health outcomes. Although anthropometric factors are known to impact vibration dose and risk of low back pain, studies have yet to investigate the influence of anthropometric factors on muscle activation during WBV exposure. This study quantified the relationships between muscle activation, vibration frequency, body mass, body mass index (BMI), and height both pre- and post-fatigue. Muscle activation of the external oblique (EO), internal oblique (IO), lumbar erector spinae (LE) and thoracic erector spinae (TE) were quantified using surface electromyography. Results indicate increased activation with increased mass, BMI, and frequency for the LE, TE, and IO, which may be a result of increased activation to stabilize the spine. Decreased muscle activation with increased height was seen in the TE, IO, and pre-fatigue EO, which could indicate higher risk for low back injury since height is associated with increased forces on the spine. This may contribute to the association between increased low back pain incidence and increased height. Results suggest that ISO 2631-1 health guidance should incorporate anthropometric factors, as these may influence muscle activation and back injury risk.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 805-821
Author(s):  
Ibrahim F. Gebrel ◽  
Samuel F. Asokanthan

This study investigates the nonlinear dynamic response behavior of a rotating ring that forms an essential element of MEMS (Micro Electro Mechanical Systems) ring-based vibratory gyroscopes that utilize oscillatory nonlinear electrostatic forces. For this purpose, the dynamic behavior due to nonlinear system characteristics and nonlinear external forces was studied in detail. The partial differential equations that represent the ring dynamics are reduced to coupled nonlinear ordinary differential equations by suitable addition of nonlinear mode functions and application of Galerkin’s procedure. Understanding the effects of nonlinear actuator dynamics is essential for characterizing the dynamic behavior of such devices. For this purpose, a suitable theoretical model to generate a nonlinear electrostatic force acting on the MEMS ring structure is formulated. Nonlinear dynamic responses in the driving and sensing directions are examined via time response, phase diagram, and Poincare’s map when the input angular motion and nonlinear electrostatic force are considered simultaneously. The analysis is envisaged to aid ongoing research associated with the fabrication of this type of device and provide design improvements in MEMS ring-based gyroscopes.


Sign in / Sign up

Export Citation Format

Share Document