scholarly journals Tapetum Types and Forms in Angiosperms

Author(s):  
Ivan I. Shamrov ◽  
Galina M. Anisimova ◽  
Anastasija A. Babro

Abstract Based on the analysis of literature and our own data, we have suggested a new version of the typification of types and forms of the tapetum. It is proposed to distinguish two types of tapetum: parietal and periplasmodial. Parietal tapetum lines the locule of microsporangium and this position is maintained throughout the development. A periplasmodial tapetum is characterised by the formation of a coenocyte as a result of the fusion of protoplasts, while the cytoplasm and nucleus are located not only between the developing microspores and pollen grains, but also come into contact with the inner layers of the cavity. The differences between tapetum types relate to the peculiarities of structural and temporal reorganisation in anther development. The protoplasts that form after the disappearance of the cell walls (usually at the stage of microspore tetrad, or after their disaggregation), gradually break down (form 1 – typical parietal tapetum), or they form protrusions inside the microsporangium cavity (form 2 – amoeboid tapetum). The protoplasts in the periplasmodial tapetum are formed before or during meiosis. They fuse resulting in a symplast. It is possible to distinguish two forms of periplasmodial tapetum: combining and invasing of protoplasts into the locule of microsporangium (form 1 – typical periplasmodial tapetum), and almost or partly fusion of protoplasts, which do not organise the invasions and maintain the initial position (form 2 – bordering symplast). Data on the diversity and structure of the tapetum, like any other characters, are used to clarify the position of taxa on the phylogenetic tree.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


2015 ◽  
Vol 140 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Dongmei Wei ◽  
Huimin Xu ◽  
Ruili Li

Anthers contain starch and neutral lipids, which have key roles in microspore ontogeny and gametophyte development. In this study, we observed the dynamic changes in starch and neutral lipids in the anther developmental processes of castor (Ricinus communis) by cytochemical methods. Starch grains and neutral lipids presented a regular dynamic distribution during anther development. In young anthers, some neutral lipids accumulated in sporogenous cells, whereas neutral lipids disappeared with microspore growth. At the late microspore stage, starch grains began to accumulate in microspores, and the starch content of bicellular pollen significantly increased after microspore mitosis. At anthesis, starch grains and neutral lipids accumulated in the mature pollen grains. Visible changes occurred in anther wall cells. The epidermis, middle layer, and tapetum were degenerated, and only a single layer of endothecium remained at anthesis. The dynamic variation of starch grains and neutral lipids in tapetal cells was consistent with the changes in microspores and pollen during anther development. All these findings demonstrated that tapetal cells directly interacted with the developing gametophytes. The tapetal cells play an important role in supplying nutritional substances for microspore absorption. Moreover, the endothecium protects the pollen and contributes to anther dehiscence. The results of this study provide a foundation for the further research on sexual reproduction in angiosperms.


2018 ◽  
Vol 19 (9) ◽  
pp. 2480 ◽  
Author(s):  
Hernán Salinas-Grenet ◽  
Ariel Herrera-Vásquez ◽  
Samuel Parra ◽  
Allan Cortez ◽  
Lilian Gutiérrez ◽  
...  

Auxin regulates diverse aspects of flower development in plants, such as differentiation of the apical meristem, elongation of the stamen, and maturation of anthers and pollen. It is known that auxin accumulates in pollen, but little information regarding the biological relevance of auxin in this tissue at different times of development is available. In this work, we manipulated the amount of free auxin specifically in developing pollen, using transgenic Arabidopsis lines that express the bacterial indole-3-acetic acid-lysine synthetase (iaaL) gene driven by a collection of pollen-specific promoters. The iaaL gene codes for an indole-3-acetic acid-lysine synthetase that catalyzes the conversion of free auxin into inactive indole-3-acetyl-l-lysine. The transgenic lines showed several abnormalities, including the absence of short stamina, a diminished seed set, aberrant pollen tubes, and perturbations in the synchronization of anther dehiscence and stamina development. This article describes the importance of auxin accumulation in pollen and its role in stamina and anther development.


1976 ◽  
Vol 18 (2) ◽  
pp. 263-269 ◽  
Author(s):  
D. Dudits ◽  
K. N. Kao ◽  
F. Constabel ◽  
O. L. Gamborg

Fusion of protoplasts from cultured cells of carrot (Daucus carota L.) and from leaves of barley (Hordeum vulgare L.) by means of polyethylene glycol resulted in the formation of 4-5 fusion products (heterokaryocytes) per 100 protoplasts. When incubated in culture medium, the heterokaryocytes regenerated cell walls and divided. The frequency of division depended on the viability of the protoplasts from carrot cell cultures, specifically, on the mitotic activity of the cells. Fusion of interphase carrot and barley nuclei was detected by differential staining. Synchronized mitosis was observed in heterokaryons containing barley and carrot nuclei.


1997 ◽  
Vol 75 (9) ◽  
pp. 1448-1459 ◽  
Author(s):  
E. Pacini

The different types of tapetum found in the spermatophyta are described, along with associated characters. The characters (taken singly, pairwise, or in multiple combinations) are (i) tapetum types; (ii) cell walls, tapetum types, and loculus; (iii) tapetal cells individually, tapetum types, and loculus; (iv) number of pollen grains enveloped by tapetal cells and type of pollen dispersing unit; (v) cell types and tapetum types; (vi) number of nuclei per cell and tapetum type; (vii) cycles of hyperactivity; (viii) exine formation; (ix) orbicles; (x) peritapetal membrane; (xi) plastid differentiation; (xii) stage of pollen development in which tapetal cells degenerate and type of pollen coat; (xiii) storage vacuoles; (xiv) sporophytic proteins; and (xv) devices of tapetal origin responsible for compound pollen formation and pollination. Examples are given and an analytical key of structural and functional diversity is provided as a helpful approach to the study of the tapetum. Key words: tapetum types, activities, pollen dispersing units.


2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Milan Gavrilović ◽  
Pedja Janaćković

In this study, the micromorphology of the vegetative and reproductive structures of the endemic Centaurea glaberrima Tausch subsp. divergens (Vis.) Hayek (Asteraceae), using scanning electron microscope (SEM), is presented for the first time. Uniseriate whip-like non-glandular and biseriate glandular trichomes are found on the surface of all aboveground parts (stem, leaves, peduncles, involucral bract). On the adaxial leaf epidermis ribbed thickenings (striation pattern) of outer periclinal cell walls, slightly curved anticlinal cell walls and anomocytic stomata are noticed. Rugose abaxial surface with thorny protuberances of the involucral bract is documented. Corolla is glabrous with longitudinally parallel epidermal cells with distinct straight outline. Isopolar, radially symmetric and tricolporate microechinate pollen grains are seen. Short stylar hairs, without cuticular striations, are present along the outer sides of the style, while the inner sides (abaxial surface) constitute the papillate stigmatic surface. Microcharacters found in cypsela are as follows: slightly ribbed body; rotund base; lateral and concave insertion; short, unicellular curly acute trichomes; smooth epidermis; fine-sulcate ornamentation; rod shaped epidermal cells with short, obtuse end walls and straight anticlinal walls; poorly developed minutely dentate pericarp rim; and dimorphic pappus with bristles of different length and morphology, with pinnules restricted to the margins of the bristles. The results obtained contribute to knowledge about the micromorphology of the studied endemic species and provide features for its better identification. The taxonomic significance of the analyzed characters is discussed. Some well defined microcharacters of the studied species might have taxonomic value


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 945-950
Author(s):  
Weiping Zhong ◽  
Zhoujun Zhu ◽  
Fen Ouyang ◽  
Qi Qiu ◽  
Xiaoming Fan ◽  
...  

The normal development of anthers and the formation of functional pollen are the prerequisites for successful pollination and fertilization. In this study, we observed dynamic changes in inflorescence and anther development in the chinquapin (Castanea henryi) using stereomicroscopy, light microscopy, and transmission electron microscopy. We found that cytokinesis during meiosis in microsporocytes was of the simultaneous type, and that the tetrads were mainly tetrahedral. Mature pollen grains contained two cells with three germ pores. The anther wall was of the basic type and composed of epidermis, endothecium, middle layers, and tapetum. Mature anthers had no middle layer and tapetum. The tapetum was of the glandular type. At the early microspore stage, a large number of starch granules appeared in the endothecium, which was deformed at the late microspore stage. Lipid droplets appeared in tapetum during the early microspore stage, and a few lipid droplets were still found during tapetum degeneration. The mature pollen accumulated a large amount of starch and lipids. These findings demonstrated that the anther wall provides nutrients and protection for pollen development. There is relatively stable correspondence between the external morphological characteristics of male flowers and internal structure of anther development.


2018 ◽  
Author(s):  
Joseph R. Jacobowitz ◽  
Jing-Ke Weng

AbstractPollen and microspore development is an essential step in the life cycle of all land plants that generate male gametes. Within flowering plants, pollen development occurs inside of the anther. Here, we report the identification of two class III peroxidase-encoding genes, PRX9 and PRX40, that are genetically redundant and essential for proper anther and pollen development in Arabidopsis thaliana. Arabidopsis double mutants devoid of functional PRX9 and PRX40 are male-sterile. The mutant anthers display swollen, hypertrophic tapetal cells and pollen grains, suggesting disrupted cell wall integrity. These phenotypes ultimately lead to nearly 100%-penetrant pollen degeneration upon anther maturation. Using immunochemical and biochemical approaches, we show that PRX9 and PRX40 are likely extensin peroxidases that contribute to the establishment of tapetal cell wall integrity during anther development. This work identifies PRX9 and PRX40 as the first extensin peroxidases to be described in Arabidopsis and highlights the importance of extensin cross-linking during plant development.


2014 ◽  
Vol 2 (4) ◽  
pp. 21-27 ◽  
Author(s):  
Svitlana L. Zhygalova ◽  
Oksana A. Futorna ◽  
Anatoliy Levanets

Abstract Micro-morphological characteristics of the four Gladiolus L. species of the Ukrainian flora (G. imbricatus L., G. italicus Mill., G. palustris Gaudin and G. tenuis M. Bieb.) as regards leaves, seeds and pollens are presented with this investigation in a detailed way. An examination of the surface structure of the leaves, seeds and pollen grains of the Gladiolus species indicates that the characteristics of the ultrastructure of leaves and of pollen grains are not diagnostic for distinguishing species, but they could be important at genus level (leaves: features such as being amphistomatic, having the same quantity of immersed stomata on both surfaces and having a high stomata index, the presence and localisation of papillae, the shape of epidermal cells; pollen grains: monosulcate type with two operculums). However, the type of surface ultrastructure of the seed coat is a diagnostic feature as at genus level so for species. It can be mentioned that propose the use of features such as the shape and position of the cicatricle, the type of cuticle, the shape and boundaries of cells of testa, and the anticlinal cell walls as diagnostic features at genera level. The shape of seeds, the presence and disposition of wing, the level of the periclinal cell walls of the seed coat and types of relief are additional diagnostic features for distinguishing of Gladiolus species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyue Liu ◽  
Ze Wu ◽  
Jingxian Feng ◽  
Guozhen Yuan ◽  
Ling He ◽  
...  

Lily (Lilium spp.) is an important commercial flower crop, but its market popularity and applications are adversely affected by severe pollen pollution. Many studies have examined pollen development in model plants, but few studies have been conducted on flower crops such as lily. GAMYBs are a class of R2R3-MYB transcription factors and play important roles in plant development and biotic resistance; their functions vary in different pathways, and many of them are involved in anther development. However, their function and regulatory role in lily remain unclear. Here, the GAMYB homolog LoMYB33 was isolated and identified from lily. The open reading frame of LoMYB33 was 1620 bp and encoded a protein with 539 amino acids localized in the nucleus and cytoplasm. Protein sequence alignment showed that LoMYB33 contained a conserved R2R3 domain and three BOX motifs (BOX1, BOX2, and BOX3), which were unique to the GAMYB family. LoMYB33 had transcriptional activation activity, and its transactivation domain was located within 90 amino acids of the C-terminal. LoMYB33 was highly expressed during the late stages of anther development, especially in pollen. Analysis of the promoter activity of LoMYB33 in transgenic Arabidopsis revealed that the LoMYB33 promoter was highly activated in the pollen of stage 12 to 13 flowers. Overexpression of LoMYB33 in Arabidopsis significantly retarded growth; the excess accumulation of LoMYB33 also negatively affected normal anther development, which generated fewer pollen grains and resulted in partial male sterility in transgenic plants. Silencing of LoMYB33 in lily also greatly decreased the amount of pollen. Overall, our results suggested that LoMYB33 might play an important role in the anther development and pollen formation of lily.


Sign in / Sign up

Export Citation Format

Share Document