Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol

2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Noorzalila Niza ◽  
Kok Tan ◽  
Zainal Ahmad ◽  
Keat Lee

AbstractIn this study, biodiesel has been successfully produced by transesterification using non-catalytic supercritical methanol and methyl acetate. The variables studied, such as reaction time, reaction temperature and molar ratio of methanol or methyl acetate to oil, were optimised to obtain the optimum yield of fatty acid methyl ester (FAME). Subsequently, the results for both reactions were analysed and compared via Response Surface Methodology (RSM) analysis. The mathematical models for both reactions were found to be adequate to predict the optimum yield of biodiesel. The results from the optimisation studies showed that a yield of 89.4 % was achieved for the reaction with supercritical methanol within the reaction time of 27 min, reaction temperature of 358°C, and methanol-to-oil molar ratio of 44. For the reaction in the presence of supercritical methyl acetate, the optimum conditions were found to be: reaction time of 32 min, reaction temperature of 400°C, and methyl acetate-to-oil molar ratio of 50 to achieve 71.9 % biodiesel yield. The differences in the behaviour of methanol and methyl acetate in the transesterification reaction are largely due to the difference in reactivity and mutual solubility of Jatropha curcas oil and methanol/methyl acetate.

2019 ◽  
Vol 41 (3) ◽  
pp. 458-458
Author(s):  
Tahir Mehmood Tahir Mehmood ◽  
Adeela Naseem Adeela Naseem ◽  
Farooq Anwar Farooq Anwar ◽  
Mudassir Iqbal and Muhammad Ashraf Shaheen Mudassir Iqbal and Muhammad Ashraf Shaheen

Response Surface Methodology (RSM) was applied based on central composite rotatable design (CCRD) to optimize transesterification reaction parameters for obtaining optimal biodiesel yield from Jatropha curcas oil. Transesterification variables such as: catalyst concentration (CC) (0.16-2%), reaction temperature (RT) (40-65and#176;C), molar ratio of oil and methanol (0.95-11.5), and reaction time (30-140 min) were optimized via RSM involving 24 full factorial CCRD design. The molar ratio of methanol to oil and RT were the most significant (pandlt; 0.5) factors affecting the yield of Jatropha curcas oil methyl esters (JOMEs). A linear relationship was recorded between the observed and predicted values (R2 = 0.766). Using multiple regression analysis, a quadratic polynomial equation was constructed to predict JOMEs yield. The quadratic term of molar ratio showed a significant impact on the JOMEs yield. The interaction terms of molar ratio and CC with reaction time exhibited positive impact on ester yield (pandlt; 0.05). The optimum reaction conditions including CH3OH to oil ratio of 6:1, 1.0 % CC, 60 and#176;C RT and 60 min reaction time offered the highest yield of JOMEs (99.90%). JOMEs were analytically characterized using GLC and FTIR. The fuel properties of produced JOMEs were in accordance to ASTM D6751 and EN 14214 standards.


2012 ◽  
Vol 30 (5) ◽  
pp. 853-866 ◽  
Author(s):  
Y.H. Taufiq-Yap ◽  
H.V. Lee ◽  
P.L. Lau

Investigation has been conducted to develop an environmental friendly and economically feasible process for biodiesel production. Natural short necked clam shell was utilized as calcium oxide (CaO) source for transesterification of non-edible Jatropha curcas oil to biodiesel. The powdered clam shell was calcined at 900°C for 3 h to transform calcium carbonate (CaCO3) in shell to active CaO catalyst. The effect of catalyst loading, methanol to oil molar ratio and reaction time on fatty acid methyl ester (FAME) yield was investigated. Under optimal condition, biodiesel yield achieved 93% within 6 h at 65°C. As a result, the catalytic activity of waste clam shell-derived catalyst is comparable to commercial CaO catalyzed reaction. Hence, it can be used as another renewable yet cost-effective catalyst source for biodiesel production.


2015 ◽  
Vol 781 ◽  
pp. 655-658 ◽  
Author(s):  
Thakun Sawiwat ◽  
Somjai Kajorncheappunngam

Synthesis of biodiesel from rubber seed oil using a supercritical methanol was investigated under various reaction conditions (220 - 300°C, 80 - 180 bar) with reaction time of 1-15 min and oil:methanol molar ratio of 1:20 - 1:60. Free fatty acid methyl esters (FAMEs) content were analyzed by gas chromatography-mass spectroscopy (GC-MS). Most properties of produced biodiesel were in good agreement with biodiesel standard (EN 14214). The maximum FAME yield of 86.90% was obtained at 260°C, 160 bar, 5 min reaction time using oil:methanol molar ratio of 1:40. The result showed the acid value of rubber seed oil decreased to 0.58 mgKOH/g from initial 24 mgKOH/g to. It could be concluded from this findings that crude rubber seed oil is a promising alternative raw material for biodiesel synthesis via supercritical methanol tranesterification.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


2019 ◽  
Vol 49 (4) ◽  
pp. 275-281
Author(s):  
María Fernanda Laborde ◽  
Laura Ivana Orifici ◽  
José Alberto Bandoni ◽  
Medardo Serna Gonzalez ◽  
José María Ponce Ortega ◽  
...  

In this paper was assessed the potential of biodiesel production from Jatropha curcas oil. The proposed process was simulated in the software Aspen Plus™ involving the stages of trans-esterification reaction, methanol recovering, purification of the obtained methyl esters, catalyst removing, purifying of glycerol and the energy integration through heat exchange networks (HEN). The biodiesel process was carried out through the catalytic reaction of transesterification of Jatropha oil with methanol using a molar ratio of methanol oil of 6:1, and with 1% w/w of NaOH (related to oil mass) as catalyst. Under these conditions, it is technologically feasible to carry out the production of biodiesel. With energy integration through the synthesis of HENs, reductions of 100% and 41.3% of hot and cold utilities were achieved. This way, the utility cost decreases 70.92%. The net present value (NPV) for the integrated process was 70.64% higher than the one corresponding to the non-integrated process under the same production conditions.


2020 ◽  
Vol 834 ◽  
pp. 16-23
Author(s):  
Pongchanun Luangpaiboon ◽  
Pasura Aungkulanon

Biodiesel was synthesized from direct transesterification of palm oil reacted with methanol in the presence of a suitable catalyst. There is a sequence of three consecutive reversible reactions for the transesterification process. These process parameters were optimized via the hybrid optimization approach of a conventional response surface method and artificial intelligence mechanisms from Sine Cosine and Thermal Exchange Optimization metaheuristics. The influential parameters and their combined interaction effects on the transesterification efficiency were established through a factorial designed experiments. In this study, the influential parameters being optimized to obtain the maximum yield of biodiesel were reaction temperature of 60–150°C, reaction time of 1–6 hours, methanol to oil molar ratio of 6:1–12:1 mol/mol and weight of catalyst of 1–10wt. %. On the first phase, the analysis of variance (ANOVA) revealed the reaction time as the most influential parameter on biodiesel production. Based on the experimental results from the hybrid algorithm via the SCO, it was concluded that the optimal biodiesel yield for the transesterification of palm oil were found to be 100°C for reaction temperature, 4 hours for reaction time, 10:1 wt/wt of ratio methanol to oil and 8% of weight of catalyst with 92.15% and 90.97% of biodiesel yield for expected and experimental values, respectively.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 230 ◽  
Author(s):  
Veronica Winoto ◽  
Nuttawan Yoswathana

The molar ratio of methanol to rubber seed oil (RSO), catalyst loading, and the reaction time of RSO biodiesel production were optimized in this work. The response surface methodology, using the Box–Behnken design, was analyzed to determine the optimum fatty acid methyl ester (FAME) yield. The performance of various nanomagnetic CaO-based catalysts—KF/CaO-Fe3O4, KF/CaO-Fe3O4-Li (Li additives), and KF/CaO-Fe3O4-Al (Al additives)—were compared. Rubber seed biodiesel was produced via the transesterification process under subcritical methanol conditions with nanomagnetic catalysts. The experimental results indicated that the KF/CaO-Fe3O4-Al nanomagnetic catalyst produced the highest FAME yield of 86.79%. The optimum conditions were a 28:1 molar ratio of methanol to RSO, 1.5 wt % catalyst, and 49 min reaction time. Al additives of KF/CaO-Fe3O4 nanomagnetic catalyst enhanced FAME yield without Al up to 18.17% and shortened the reaction time by up to 11 min.


2013 ◽  
Vol 389 ◽  
pp. 12-16
Author(s):  
Yong Feng Kang ◽  
Hua Jin Shi ◽  
Lin Ge Yang ◽  
Jun Xia Kang ◽  
Zi Qi Zhao

Biodiesel is prepared from waste cooking oil and methanol. The ester exchange reaction is conducted under ultrasonic conditions with alkali as the catalysts. Five factors influencing on the transesterification reaction of biodiesel production are discussed in this study, including the reaction time, reaction temperature, catalyst amount, methanol to oil molar ratio, ultrasonic power. A series of laboratory experiments were carried out to test the conversion of biodiesel under various conditions. The process of biodiesel production was optimized by application of orthogonal test obtain the optimum conditions for biodiesel synthesis. The results showed that the optimum reaction conditions were:molar ratio of oil to methanol 8:1,catalysts 1.2g KOH/100g oil,reaction temperature 70°C, reaction time 50 min,Ultrasonic power 400W. The conversion may up to 96.48%.


2011 ◽  
Vol 17 (2) ◽  
pp. 117-124 ◽  
Author(s):  
B. Singh ◽  
Faizal Bux ◽  
Y.C. Sharma

Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalyst respectively. It was found that the homogeneous catalyst (KOH) took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 wt% of catalyst amount, 55?0.5?C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO) was found to give optimum yield in 2.5 h of reaction time at 8:1 methanol to oil molar ratio, 2.5 wt% of catalyst amount, at 65?0.5?C. A high yield (95-97%) and conversion (>96.5%) was obtained from both the catalysts. CaO was found to leach to some extent in the reactants and a biodiesel conversion of 27-28% was observed as a result of leaching.


Sign in / Sign up

Export Citation Format

Share Document