scholarly journals Epitaxial Growth of GaP/InxGa1-xP (xIn ≥ 0.27) Virtual Substrate for Optoelectronic Applications

2011 ◽  
Vol 62 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Stanislav Hasenöhrl ◽  
Jozef Novák ◽  
Ivo Vávra ◽  
Ján Šoltýs ◽  
Michal Kučera ◽  
...  

Epitaxial Growth of GaP/InxGa1-xP (xIn ≥ 0.27) Virtual Substrate for Optoelectronic Applications Compositionally graded epitaxial semiconductor buffer layers are prepared with the aim of using them as a virtual substrate for following growth of heterostructures with the lattice parameter different from that of the substrates available on market (GaAs, GaP, InP or InAs). In this paper we report on the preparation of the step graded InxGa1-xP buffer layers on the GaP substrate. The final InxGa1-xP composition xIn was chosen to be at least 0.27. At this composition the InxGa1-xP band-gap structure converts from the indirect to the direct one and the material of such composition is suitable for application in light emitting diode structures. Our task was to design a set of layers with graded composition (graded buffer layer) and to optimize growth parameters with the aim to prepare strain relaxed template of quality suitable for the subsequent epitaxial growth.

2005 ◽  
Vol 891 ◽  
Author(s):  
John Tolle ◽  
Radek Roucka ◽  
Vijay D'Costa ◽  
Jose Menendez ◽  
Andrew Chizmeshya ◽  
...  

ABSTRACTWe report growth and properties of GeSn and SiGeSn alloys on Si (100). These materials are prepared using a novel CVD approach based on reactions of Si-Ge hydrides and SnD4. High quality GeSn films with Sn contents up to 20%, and strain free microstructures have been obtained. The lattice mismatch between the films and Si is relieved by Lomer edge dislocations located at the interface. This material is of interest due to the predicted cross-over to a direct gap semiconductor for moderate Sn concentrations. We find that the direct band gap, and, consequently, the main absorption edge, shifts monotonically to lower energies as the Sn concentration is increased. The compositional dependence of the direct band gap shows a strong bowing, such that the direct band gap is reduced to 0.4 eV (from 0.8 eV for pure Ge) for a concentration of 14% Sn. The ternary SiGeSn alloy has been grown for the first time on GeSn buffer layers. This material opens up entirely new opportunities for strain and band gap engineering using group-IV materials via decoupling of strain and composition. Our SiGeSn layers have lattice constants above and below that of pure Ge, and depending on the thickness and composition of the underlying buffer layer they can be grown relaxed, with compressive, or with tensile strain. In addition to acting as a buffer layer for the growth of SiGeSn, we have found that GeSn can act as a template for the subsequent growth of a variety of materials, including III-V semiconductors.


2016 ◽  
Vol 855 ◽  
pp. 45-57 ◽  
Author(s):  
Kalithasan Natarajan ◽  
Rukshana I. Kureshy ◽  
Hari C. Bajaj ◽  
Rajesh J. Tayade

Anatase TiO2 nanotubes (ATNT) was synthesised by hydrothermal method using anatase TiO2 nanoparticles (AT) as precursor and calcined at two different temperatures (250 & 450 °C) for 2 h. The AT and synthesized ATNT photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurements, UV-vis diffuse reflectance and Fourier Transform Infra-red spectroscopy techniques for their structural, textural and electronic properties. The photocatalytic degradation of Indigo carmine (IC) dye aqueous solution has carried out using ATNT-250 and ATNT-450 photocatalysts under UVLED irradiation. The kinetic analysis has also revealed that the degradation of IC dye solution follows first order kinetic model. The overall study demonstrates the appropriate band gap of the photocatalysts used and the suitable irradiation source which could accelerate the rate of photocatalytic degradation. The band gap of the synthesised ATNT is not much affected due to the change in morphology from nanoparticle to nanotube. The results demonstrated that the irradiation of UV-LED could be utilised for the degradation of organic dyes


1987 ◽  
Vol 91 ◽  
Author(s):  
R.M. Lum ◽  
J.K. Klingert ◽  
B.A. Davidson ◽  
M.G. Lamont

ABSTRACTIn the direct growth of GaAs on Si by MOCVD the overall quality of the heteroepitaxial film is controlled to a large extent by the growth parameters of the initial GaAs buffer layer. We have investigated the structural properties of this layer using Rutherford Backscattering Spectrometry (RBS) and X-ray double crystal diffractometry. The crystallinity of the buffer layer was observed to improve with increasing layer thickness in the range 10–100nm, and then to rapidly degrade for thicker layers. High temperature (750°C) annealing of the buffer layers resulted in considerable reordering of all but the thicker (>200 nm) layers. Alteration of the usual GaAs/Si growth sequence to include an in-situ anneal of the buffer layer after growth interruption yielded GaAs films with improved structural, optical and electrical properties.


1997 ◽  
Vol 468 ◽  
Author(s):  
Y.-M. Le Vaillant ◽  
S. Ciur ◽  
A. Andenet ◽  
O. Briot ◽  
B. Gil ◽  
...  

ABSTRACTThe problem of residual strain in GaN epilayers is currently the attention of many studies, since it affects the optical and electrical properties of the epilayers. In order to discuss the origin of this residual strain, we have grown a series of GaN epilayers onto AlN buffer layers, sapphire (0001) being used as substrate. The buffer layer is usually deposited in an amorphous state and is recrystallized by a thermal annealing. Here we have made a systematic study of the buffer recrystallization by changing the annealing temperature and the annealing time. The surface morphology is probed using Atomic Force Microscopy (AFM). The lattice parameter c is carried out from accurate x-ray diffraction measurements. The GaN layers were studied by low temperature photoluminescence and reflectivity. The amount of residual strain is calibrated from the position of the A exciton and the optical quality of the layers is assessed from the photoluminescence linewidths. The longer the annealing time the better the strain relaxation in AlN buffer layers and the higher the lattice mismatch with GaN overlayers.


2018 ◽  
Vol 6 (7) ◽  
pp. 1642-1650 ◽  
Author(s):  
Wenliang Wang ◽  
Yunhao Lin ◽  
Yuan Li ◽  
Xiaochan Li ◽  
Liegen Huang ◽  
...  

High-quality GaN-based light-emitting diode (LED) wafers have been grown on Si substrates by metal–organic chemical vapor deposition by designing epitaxial structures with AlN/Al0.24Ga0.76N buffer layers and a three-dimensional (3D) GaN layer.


Sign in / Sign up

Export Citation Format

Share Document