scholarly journals Effect of Increased Urea Levels on Mouse Preimplantation Embryos Developed in Vivo and in Vitro

2012 ◽  
Vol 56 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Ján Bystriansky ◽  
Ján Burkuš ◽  
Štefan Juhás ◽  
Dušan Fabian ◽  
Juraj Koppel

Abstract High plasma urea nitrogen concentration has been proposed as an important factor contributing to the decline in reproductive parameters of domestic animals. The aim of this study was to evaluate the effect of urea on the development of preimplantation embryos in a mouse model. During in vivo tests, acute renal failure (ARF) accompanied by hyper-uraemia was induced by intramuscular administration of glycerol (50%) into hind limbs of fertilised dams. During in vitro tests, embryos collected from healthy dams were cultured in a medium with the addition of various concentrations of urea from the 4-cell stage to the blastocyst stage. Stereomicroscopic evaluation and fluorescence staining of embryos obtained from dams with ARF showed that high blood urea is connected with an increase in the number blastocysts containing at least one apoptotic cell and in the incidences of dead cells per blastocyst, but it did not affect their ability to reach the blastocyst stage. In vitro tests showed that culture of embryos with urea at concentration of 10 mM negatively affected the quality of obtained blastocysts. Blastocysts showed significantly lower numbers of cells and increased incidence of dead cells. An increase in apoptosis incidence was observed even in blastocysts obtained from cultures with 5 mM urea. Urea at concentrations 50 mM and higher negatively affected the ability of embryos to reach the blastocyst stage and the highest used concentrations (from 500 mM) caused overall developmental arrest of embryos at the 4- or 5- cell stage. These results show that elevated levels of urea may cause changes in the microenvironment of developing preimplantation embryos, which can negatively affect their quality. Embryo growth remains un-affected up to very high concentrations of urea.

2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


1996 ◽  
Vol 8 (6) ◽  
pp. 945 ◽  
Author(s):  
RJ Partridge ◽  
HJ Leese

Bovine embryos produced in vitro from the putative zygote stage to the blastocyst stage, and blastocysts freshly flushed from the uterus, were cultured in a physiological mixture of amino acids. Depletion of amino acids from the medium and, in a few cases, their appearance, was measured by high performance liquid chromatography. Amino acids were depleted at widely differing rates. The depletion of amino acids was higher when embryos at later developmental stages were cultured, implying an increase in amino acid requirement with development. Threonine was the only amino acid to be depleted at all stages of development; depletion increased from 0.18 +/- 0.07 pmol embryo-1 h-1 at the putative zygote stage to 1.96 +/- 0.49 pmol embryo-1 h-1 at the blastocyst stage. Glutamine was depleted at the putative zygote stage and the 4-cell stage (0.76 +/- 0.05 and 0.94 +/- 0.10 pmol embryo-1 h-1 respectively), but was not significantly depleted at the later stages. Alanine was the only amino acid that appeared consistently in the medium and its production increased progressively throughout development. Aspartate, glutamate, threonine and lysine were depleted significantly by blastocysts derived both in vitro and in vivo; the embryos in vivo also depleted arginine, phenylalanine, isoleucine and tyrosine. These results indicate that individual amino acids are depleted at different rates by bovine preimplantation embryos and suggest that amino acid requirements change during development.


2006 ◽  
Vol 18 (2) ◽  
pp. 248
Author(s):  
S.-G. Lee ◽  
C.-H. Park ◽  
D.-H. Choi ◽  
H.-Y. Son ◽  
C.-K. Lee

Use of blastocysts produced in vitro would be an efficient way to generate embryonic stem (ES) cells for the production of transgenic animals and the study of developmental gene regulation. In pigs, the morphology and cell number of in vitro-produced blastocysts are inferior to these parameters in their in vivo counterparts. Therefore, establishment of ES cells from blastocysts produced in vitro might be hindered by poor embryo quality. The objective of this study was to increase the cell number of blastocysts derived by aggregating 4–8-cell stage porcine embryos produced in vitro. Cumulus–oocyte complexes were collected from prepubertal gilt ovaries, and matured in vitro. Embryos at the 4–8-cell stage were produced by culturing embryos for two days after in vitro fertilization (IVF). After removal of the zona pellucida with acid Tyrode’s solution, one (1X), two (2X), and three (3X) 4–8-cell stage embryos were aggregated by co-culturing them in aggregation plates followed by culturing to the blastocyst stage. After 7 days, the developmental ability and the number of cells in aggregated embryos were determined by staining with Hoechst 33342 and propidium iodide. The percentage of blastocysts was higher in both 2X and 3X aggregated embryos compared to that of 1X and that of intact controls (Table 1). The cell number of blastocysts also increased in aggregated embryos compared to that of non-aggregated (1X) embryos and controls. This result suggests that aggregation might improve the quality of in vitro-fertilized porcine blastocysts by increasing cell numbers, thus becoming a useful resource for isolation and establishment of porcine ES cells. Further studies are required to investigate the quality of the aggregated embryos in terms of increasing the pluripotent cell population by staining for Oct-4 and to apply improved aggregation methods in nuclear-transferred (NT) porcine embryos. Table 1. Development, cell number, and ICM ratio of aggregated porcine embryos


Zygote ◽  
1994 ◽  
Vol 2 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Asangla Ao ◽  
Robert P. Erickson ◽  
Robert M.L. Winston ◽  
Alan H Handysude

SummaryGlobal activation of the embryonic genome occurs at the 4– to 8–cell stage in human embryos and is marked by continuation of early cleavage divisions in the presence of transcriptional inhibitors. Here we demonstrate, using recerse transcripase–polymerase chin reaction (Rt–PCR), the presence of transcripts for wo paternal Y chromosomal genes, ZFY and SRY in human preimplantation embryos. ZFY transcripts were detected as early as the pronucleate stage, 20–24 h post-insemination In vitro and at intermediate stages up to the blastocyst stage. SRY Transcripts were also detected at 2–cell to blastocyos observed in many mammalian species focuses attention on the role of events in six determination prior to gonad differentiation.


Reproduction ◽  
2006 ◽  
Vol 131 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Hakan Sagirkaya ◽  
Muge Misirlioglu ◽  
Abdullah Kaya ◽  
Neal L First ◽  
John J Parrish ◽  
...  

Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were culturedin vitroin three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR.In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P< 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P< 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P< 0.001). Expression of interferon tau (IF-τ) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P< 0.001). Gene expression did not differ betweenin vivo-derived blastocysts and theirin vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


2013 ◽  
Vol 25 (1) ◽  
pp. 256 ◽  
Author(s):  
A. Al Naib ◽  
S. Mamo ◽  
P. Lonergan

Successful establishment and maintenance of pregnancy requires optimum conceptus-maternal cross talk. Despite significant progress in our understanding of the temporal changes in the transcriptome of the uterine endometrium, we have only a rudimentary knowledge of the genes and pathways governing growth and development of the bovine conceptus. A recent RNA sequencing study from our group (Mamo et al. 2011 Biol. Reprod. 85, 1143–1151) described the global transcriptome profile of the bovine conceptus at 5 key stages of its pre- and peri-implantation growth (Days 7, 10, 13, 16, and 19) using RNA sequencing techniques. One cluster of genes (n = 1680 transcripts) was preferentially upregulated at Day 7 and subsequently downregulated, suggesting that these genes might be markers of blastocyst formation. The objective of this study was to characterise the pattern of expression of these genes before Day 7 (i.e. from the zygote to blastocyst stage). The list of genes was submitted to DAVID (Database for Annotation, Visualisation, and Integrated Discovery) to take advantage of available ontology information contained therein. The expression of 9 genes belonging to ontologies specifically related to embryo developmental (GINS1, TAF8, ESRRB, NCAPG2, SP1, XAB2, CDC2L1, MSX1, and AQP3) plus Na/K ATPase, a gene previously known to be involved in blastocoe formation, was studied by quantitative real-time PCR (QPCR) in 6 replicate pools of 5 embryos produced by maturation, fertilization, and embryo culture in vitro. Stages studies included immature and mature oocyte, zygote, 2- cell, 4-cell, 8-cell, 16-cell, morula, blastocyst, and hatched blastocyst. In addition, in vivo derived Day 13 and Day 16 embryos were included as controls to confirm down-regulation after Day 7. Data were analysed using the GLM procedure of SAS. The QPCR expression data supported the RNA Seq data in that expression of all transcripts was downregulated after the blastocyst stage. Expression before the blastocyst stage was characterised by 1 of 3 broad patterns: (1) the expression was of maternal origin where the expression was very high up to 8-cell stage and decreased subsequently (MSX1), (2) the expression was of embryonic origin being low up to the 8-cell stage and increasing thereafter (TAF8, ESRRB, AQP3, and Na/K ATPase), or (3) static or decreased expression from oocyte to the maternal-zygotic transition followed by increased expression from the 16-cell stage (GINS1, NCAPG2, SP1, XAB2, and CDC2L1). In conclusion, the genes identified in this cluster, despite having different patterns of expression before the blastocyst stage, may represent markers of blastocyst formation in cattle given their downregulation subsequently. Supported by Science Foundation Ireland (07/SRC/B1156).


2008 ◽  
Vol 20 (1) ◽  
pp. 176
Author(s):  
D. X. Zhang ◽  
X. H. Shen ◽  
X. S. Cui ◽  
N.-H. Kim

MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding RNA molecules that can regulate gene expression by base-pairing with fully or partially sequence-complementary target mRNAs. Hundreds of miRNAs have been identified in various multicellular organisms and many miRNAs are evolutionarily conserved. While miRNAs play an important role in animal development, little is known about their biological function during early mammalian development. In order to obtain insight into the role of miRNAs in early embryogenesis, we first determined the expression levels of three apoptosis-related miRNAs, miR-15a, -16, and -21 in mouse preimplantation embryos using TaqMan� MicroRNA Assays. Five embryos of each developmental stage were snap-frozen and amplified by stem-loop RT primer and TaqMan Universal PCR Master Mix (Applied Biosystems Inc., Foster City, CA, USA). The miRNA concentrations (10–X) in embryo samples were calculated by standard curve from synthetic lin-4 miRNA and the absolute copy number per embryo was obtained based on the formula of 6.02 � 10(8–X). All three miRNAs had low expression levels from the zygote to the 8-cell stage and were up-regulated thereafter. In general, among the three miRNAs, miR-15a exhibited the lowest expression in preimplantation embryos, while miR-16 exhibited the highest. Because of the low levels of miRNA-15a, we determined developmental ability and apoptosis of embryos following microinjection of miRNA-15a. The microinjection of miR-15a into zygotes did not affect embryo development up to the blastocyst stage (miR-15a, 90 � 4.5% v. buffer 94.6 � 5.8%); however, it did induce a significant degree of apoptosis (P < 0.05; Tukey's multiple range test). Furthermore, the expression levels of miR-15a and -16 were increased in microinjected blastocysts compared to the control group (copy number per blastocyst, miR-15a, 6991 � 1223 v. 3098 � 592; miR-16, 196216 � 958 v. 133514 � 6059). Real-time RT-PCR data showed that the gene expression levels of the housekeeping gene GAPDH, the anti-apoptotic gene Bcl-xL, and the miRNA pathway-related genes GW182 and Dicer remained unchanged in miR-15a-injected blastocysts compared to the control group. In contrast, the expression of the stem cell-specific transcriptional factor Oct-4 (fold change, 1.451 � 0.12), the pro-apoptotic gene Bax (1.418 � 0.12), and Caspase 3 (1.314 � 0.19) were significantly increased in microinjected blastocysts. In addition, treatment of 2-cell embryos with 600 µm H2O2 induced apoptosis and increased the expression level of miR-16 at the blastocyst stage (P < 0.05). Taken together, the changes in the expression levels of miR-15a, -16, and -21 in various embryonic developmental stages indicate a possible role for them in early embryogenesis. Furthermore, the high expression levels of miR-15a and miR-16 seem to be linked to apoptosis in blastocyst-stage embryos; this may be due to an increase in the expression of pro-apoptotic genes.


Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 507-517 ◽  
Author(s):  
M Clemente ◽  
J de La Fuente ◽  
T Fair ◽  
A Al Naib ◽  
A Gutierrez-Adan ◽  
...  

The steroid hormone progesterone (P4) plays a key role in the reproductive events associated with pregnancy establishment and maintenance. High concentrations of circulating P4 in the immediate post-conception period have been associated with an advancement of conceptus elongation, an associated increase in interferon-τ production and higher pregnancy rates in cattle. Using in vitro and in vivo models and ∼8500 bovine oocytes across six experiments, the aim of this study was to establish the route through which P4 affects bovine embryo development in vitro and in vivo. mRNA for P4 receptors was present at all stages of embryo development raising the possibility of a direct effect of P4 on the embryo. Exposure to P4 in vitro in the absence or presence of oviduct epithelial cells did not affect the proportion of embryos developing to the blastocyst stage, blastocyst cell number or the relative abundance of selected transcripts in the blastocyst. Furthermore, exposure to P4 in vitro did not affect post-hatching elongation of the embryo following transfer to synchronized recipients and recovery on Day 14. By contrast, transfer of in vitro derived blastocysts to a uterine environment previously primed by elevated P4 resulted in a fourfold increase in conceptus length on Day 14. These data provide clear evidence to support the hypothesis that P4-induced changes in the uterine environment are responsible for the advancement in conceptus elongation reported previously in cattle and that, interestingly, the embryo does not need to be present during the period of high P4 in order to exhibit advanced elongation.


1982 ◽  
Vol 35 (2) ◽  
pp. 187 ◽  
Author(s):  
GM Harlow ◽  
P Quinn

The culture conditions for the development in vitro of (C57BL/6 X CBA) F2 hybrid two-cell embryos to the blastocyst stage have been optimized. Commercially available pre-sterile disposable plastic culture dishes supported more reliable development than re-usable washed glass tubes. The presence of an oil layer reduced the variability in development. An average of 85 % of blastocysts developed from hybrid two-cell embryos cultured in drops of Whitten's medium under oil in plastic culture dishes in an atmosphere of 5% O2 : 5% CO2 : 90% N2 ? The time taken for the total cell number to double in embryos developing in vivo was 10 h, and in cultured embryos 17 h. Embryos cultured in vitro from the two-cell stage to blastocyst stage were retarded by 18-24 h in comparison with those remaining in vivo. Day-4 blastocysts in vivo contained 25-70 cells (mean 50) with 7-28 (mean 16) of these in the inner cell mass. Cultured blastocysts contained 19-73 cells (mean 44) with 8-34 (mean 19) of these in the inner cell mass. In the uterine environment, inner-cell-mass blastomeres divided at a faster rate than trophectoderm blastomeres and it is suggested that a long cell cycle is associated with terminal differentiation. Although cultured blastocysts and inner cell masses contained the same number of cells as blastocysts and inner cell masses in vivo, the rate of cell division in cultured inner cell masses was markedly reduced.


Sign in / Sign up

Export Citation Format

Share Document