scholarly journals Development of Fourier transform infrared spectrophotometric method for identification and determination of marketed metamizole tablet preparation

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
NERDY NERDY ◽  
EFFENDY DE LUX PUTRA ◽  
NILSYA FEBRIKA ZEBUA ◽  
CHRISTICA ILSANNA SURBAKTI ◽  
JIHAN SAFIRA

Metamizole is a nonsteroidal antiinflammatory drug (NSAID) that functions as an analgesic, antipyretic, and antiinflammatory. Examination of active substance contents is a requirement that must be met to ensure the quality of drug preparations. The aims of this study were to develop and validate the Fourier Transform Infrared spectrophotometric method for the quantitation of metamizole content in marketed tablet preparation. Identification and determination of metamizole contents by Fourier Transform Infrared spectrophotometric method used methanol solvent in the wavenumber range 4000 cm–1 to 650 cm–1. The results showed that the specific wavenumbers of metamizole were 1649.3 cm–1; 1623.3 cm–1; and 1589.7 cm–1; and the contents metamizole in marketed tablet preparation ranged from (97.954 ± 0.121)% to (104.541 ± 0.257)%. From the validation method, the recovery result is 100.129%; the relative standard deviation is 0.057%; the limit of detection is 2.09526 mg/mL; the limit of quantitation is 6.34928 mg/mL; and the range 40 mg/mL to 60 mg/mL. The quantitation of metamizole contents can be carried out by Fourier Transform Infrared spectrophotometric method with accurate and precise quantitation results.

2021 ◽  
Vol 7 (2) ◽  
pp. 168-177
Author(s):  
Nerdy Nerdy ◽  
Linda Margata ◽  
Dian Ika Perbina Meliala ◽  
Bunga Mari Sembiring ◽  
Selamat Ginting ◽  
...  

The first line drug given for monotherapy for diabetes mellitus type 2 is metformin hydrochloride, which is a biguanide antihyperglycemic drug. The aim of this research was to develop, validate, and apply the Fourier Transform Infrared spectrophotometry method to identify and determine metformin hydrochloride in marketed tablet dosage form. This research included preparation of standard, analysis of samples, and validation of method. The specific wavenumber obtained for qualitative analysis was 1645.68 cm–1 and 1574.8 cm–1. The specific area obtained for quantitative analysis with a single baseline ranged from 1701.53 cm–1 to 1535.66 cm–1. All metformin hydrochloride marketed tablet dosage forms were analyzed and met all of the qualitative and quantitative requirements. The methods met the requirements of method validation for accuracy with a percentage of recovery of 100.22 %, precision with relative standard deviation of 0.48 %, linearity with a correlation coefficient of 0.9992, limit of detection of 11.17 mg per mL, limit of quantitation of 33.84 mg per mL, and good specificity results. In this study, the Fourier Transform Infrared spectrophotometry method was successfully developed and validated for application in identification and determination of metformin hydrochloride in marketed tablet dosage form.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2021 ◽  
Vol 30 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Ramsingh Kurrey ◽  
Kaushlya Thakur ◽  
Swati Chandrawanshi ◽  
Manas Kanti Deb

A new, simple, rapid and precise novel hyphenated diffuse reflectance-Fourier transform infrared spectroscopy (DRS-FTIR) technique for the simultaneous determination of the most frequently used cationic surfactants (CS+) i.e. cetyltrimethylammonium bromide (CTAB) and anionic surfactant (AS-) i.e. sodium dodecyl sulphate (SDS) in domestic, sewage and river wastewater samples has been stabilised. CS+ and AS- were analyzed using DRS-FTIR, the most steady and strongest vibrational IR peak at 2917.13 cm-1 for CTAB and 1226.07 for SDS were selected for the simultaneous quantiflcation of CS+ and AS- under the optimized condition such as effect of samples volume and effect of temperature. The limit of detection (LOD) and limit of quantiflcation (LOQ) of the present method were 5 µg/mL and 15 µg/mL, respectively. The absorbance and peak area were determined by the DRS-FTIR method, which shows excellent linearity with a correlation coefflcient value of 0.985 and 0.981 for the concentration range of 10-100 µg/mL. The standard deviation (SD) and relative standard deviation (RSD) for six replicate measurements were found to be 0.052 µg/L and 2.8 %, respectively.


Author(s):  
Nerdy Nerdy

Objective : Mebhydrolin Napadisylate is classified as an antihistamine drug classes used to treat allergies. One of the quality requirements for drug preparation was active compound levels must meet the requirements as stated in the Pharmacopoeia or other standard books. The purpose of this study was to validate an ultraviolet spectrophotometric method of determination of Mebhydrolin Napadisylate in the tablet preparation available in the market.Methods : Solvents used are hydrochloric acid (HCl) 0.1 N in methanol and sodium hydroxide (NaOH) 0.1 N in methanol for determination of Mebhydrolin Napadisylate and has not been reported. The ultraviolet spectrophotometric method used in the determination of Mebhydrolin Napadisylate will be conducted validation which includes: accuracy, precision, linearity, range, limit of detection (LOD) and limit of quantitation (LOQ).Results : Measurements were made at a maximum wavelength (λmax) of Mebhydrolin Napadisylate 287 nm. Results of ultraviolet spectrophotometric method validation in determination of Mebhydrolin Napadisylate in tablet preparation; accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) meet the requirements of validation tests for methods of analysis. The obtained results of the determination of Mebhydrolin Napadisylate levels in tablet preparation with a branded name on the market meet the general requirements of tablet preparation.Conclusion : Ultraviolet spectrophotometric method of Mebhydrolin Napadisylate determination in tablet preparation meets the requirements of validation tests for methods of analysis. The determination of Mebhydrolin Napadisylate levels in tablet preparation meets the general requirements of tablet preparation.Keywords : Development, Validation, Ultraviolet Spectrophotometric, Mebhydroline Napadisylate


2013 ◽  
Vol 634-638 ◽  
pp. 1586-1590
Author(s):  
Su Fang Wang ◽  
Shou Jie Zhang ◽  
Chun Hong Dong ◽  
Guo Qing Wang ◽  
Jun Feng Guo ◽  
...  

A method for simultaneous determination of residuals of four herbicides and pesticides, simazine, carboxin, diflubenzuron and rotenone, in Chinese green tea was developed. In the proposed method, the tea powder was placed in a centrifuge tube with a plug, extracted in saturated aqueous sodium chloride solution and acetonitrile, agitated using vortex oscillator, and then centrifuged 5 min at 4000 rpm. The supernatant solution was purified by primary secondary amine (PSA) sorbent, C18 power, and graphitized carbon black powder, respectively. Then the purified extracts were dissolved with acetonitrile:0.1% formic acid aqueous solution (40:60, V/V) and agitated, filtered using a syringe with 0.22 μm nylon filter prior to UPLC-MS/MS analysis. The UPLC analysis was performed on an ACQUITY UPLC® HSS T3 column (2.1 mm×100 mm, 1.8 µm), using acetonitrile-0.1% formic acid as mobile phase with the flow rate as 0.3 mL•min-1. Injection volume was 10 µL. Positive ionization mode was applied, and the ions were monitored in the multiple reaction monitoring (MRM) mode with curtain gas 0.069 MPa, collision gas 0.052 MPa, ESI ion spray voltage 5000 V, temperature 550 °C, nebulizer gas 0.24 MPa, and turbo gas 0.28 MPa. The limit of detection (LOD) and limit of quantitation (LOQ) of the proposed method are 1 μg•kg-1and 5 μg•kg-1, respectively. The average recoveries of the four pesticides at 10, 20, and 50 µg•kg-1spiking levels range from 77.4% to 95.3%. TheSupersSuperscript textcript textrelative standard deviation (RSD) (n=6) range form 11.83% to 4.52%.


2010 ◽  
Vol 7 (4) ◽  
pp. 1612-1620 ◽  
Author(s):  
M. Keyvanfard ◽  
N. Abedi

A new, simple, sensitive and selective kinetic spectrophotometric method was developed for the determination of ultra trace amounts of vanadium(V). The method is based on the catalytic effect of vanadium(V) on the oxidation of malachite green oxalate (MG) by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of malachite green oxalate (MG) at 625 nm with a fixed-time method. The decrease in the absorbance of MG is proportional to the concentration of vanadium(V) in the range of 1-100 ng/mL with a fixed time of 0.5-2 min from the initiation of the reaction. The limit of detection is 0.71 ng/mL of vanadium(V). The relative standard deviation for the determination of 5, 30, 50 ng/mL of vanadium(V) was2.5% 2.6%, 2.4% and respectively. The method was applied to the determination of vanadium(V) in water samples.


2009 ◽  
Vol 63 (9) ◽  
pp. 1015-1021 ◽  
Author(s):  
David Pérez-Palacios ◽  
Sergio Armenta ◽  
Bernhard Lendl

A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18 non-polar sorbent is placed inside the sensor and is able to retain hydrocarbons from water samples. The system does not require the use of chlorinated solvents, reducing the environmental impact, and the minimal sample handling stages serve to ensure sample integrity whilst reducing exposure of the analyst to any toxic hydrocarbons present within the samples. Fourier transform infrared (FT-IR) spectra were recorded by co-adding 32 scans at a resolution of 4 cm−1 and the band located at 1462 cm−1 due to the CH2 bending was integrated from 1475 to 1450 cm−1 using a baseline correction established between 1485 and 1440 cm−1 using the areas as analytical signal. The technique, which provides a limit of detection (LOD) of 22 mg L−1 and a precision expressed as relative standard deviation (RSD) lower than 5%, is considerably rapid and allows for a high level of automation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2007 ◽  
Vol 90 (3) ◽  
pp. 720-724
Author(s):  
Sevgi Tatar Ulu

Abstract A sensitive and selective high-performance liquid chromatographic method has been developed for the determination of tianeptine (Tia) in tablets. The method is based on derivatization of Tia with 4-chloro-7-nitrobenzofurazan (NBD-Cl). A mobile phase consisting of acetonitrile10 mM orthophosphoric acid (pH 2.5; 77 + 23) was used at a flow rate of 1 mL/min on a C18 column. The Tia-NBD derivative was monitored using a fluorescence detector, with emission set at 520 nm and excitation at 458 nm. Gabapentin was selected as an internal standard. Linear calibration graphs were obtained in the concentration range of 45300 ng/mL. The lower limit of detection (LOD) was 10 ng/mL at a signal-to-noise ratio of 4. The lower limit of quantitation (LOQ) was 45 ng/mL. The relative standard values for intra- and interday precision were &lt;0.46 and &lt;0.57%, respectively. The recovery of the drug samples ranged between 98.89 and 99.85%. No chromatographic interference from the tablet excipients was found. The proposed method was validated in terms of precision, robustness, recovery, LOD, and LOQ. All the validation parameters were within the acceptance range. The proposed method was applied for the determination of Tia in commercially available tablets. The results were compared with those obtained by an ultraviolet spectrophotometric method using t- and F-tests.


Sign in / Sign up

Export Citation Format

Share Document