Mathematical Model of Gas-Dynamic Temperature Transducer

2019 ◽  
Vol 7 (3) ◽  
pp. 10-16
Author(s):  
V.V. Nazarov ◽  
I.I. Danilov ◽  
N.G. Nazarov ◽  
D.D. Dmitriev ◽  
N.A. Vetrova

The design of technological processes for the manufacture of gas-dynamic supports (GDO) of gyroscopes is traditionally based on the use of finishing operations with the use of free abrasive. This leads to a high complexity of manufacturing such devices and complicates mass production. Reducing the labor intensity is possible when the labor-intensive finishing operation with a more productive operation of honing the holes of the GDO is replacing. But such a replacement requires the development of high-precision technology, which implies mathematical modeling of the process of honing the holes of GDO gyroscopes made of ceramic CM-332. Objective – a mathematical model of the process of honing the holes of GDO gyroscopes made of ceramic CM-332 is developed, which allows for the known shape of the workpiece, the tool used and the technological modes to calculate the geometric shape of the processed hole, and the value of any error. A mathematical model of honing of precision holes of GDO gyroscopes is developed, which takes into account the main factors of the process, the characteristics of the tool and the technological modes of processing. The dependence of the accuracy of the geometric shape of the processed hole on the characteristics of the tool is determined. The use of the results of the study made it possible to reduce the labor intensity of finishing operations for processing GDO holes by 10-15 times in the conditions of mass production of gyroscopes.


Author(s):  
О.А. Solovyeva ◽  
А.А. Drozdov ◽  
E.Yu. Popova ◽  
K.V. Soldatova

The centrifugal compressor design involves the use of approximate engineering techniques based on mathematical modeling. One of such techniques is the universal modeling method, which proves to be practically applicable. Having generalized a series of CFD calculations, we used a mathematical model in the latest version of the compressor model to calculate flow parameters in vaneless diffusers. The diffuser model was identified based on the results of experimental studies of average-flow model stages carried out at SPbPU. The model is also used to calculate Clark low-flow centrifugal compressor stages with narrow diffusers with a relative width in the range of 0.5--2.0 %. For these stages, the developed mathematical model showed insufficient efficiency, since the dimensions of the diffusers go beyond the limits of its applicability. To solve this problem, we calculated a series of vaneless diffusers with a relative width in the range of 0.6--1.2 % in the ANSYS CFX software package. Relying on the results of CFD calculations, we plotted the gas dynamic characteristics of the loss coefficients and changes in the flow angle depending on the flow angle at the inlet to the vaneless diffuser. To process the calculated data, the method of regression analysis was applied, with the help of which a system of algebraic equations was developed that connects geometric, gas-dynamic parameters and similarity criteria. The obtained equations are included in a new mathematical model of the universal modeling method for calculating the flow parameters of vaneless diffusers. Comparison of the calculated gas-dynamic characteristics according to the new model with experimental data showed the average error of modeling the calculated (maximum) efficiency equal to 1.08 %


Author(s):  
A.I. Sukhinov ◽  
◽  
A.E. Chistyakov ◽  
N.N. Efimov ◽  
V.N. Baltyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document