scholarly journals Problems, Suggestions and Last Trends Related to Salgam Beverage which is Traditional Product of Turkey

Author(s):  
Hasan Tangüler ◽  
Selin Özge Dinç ◽  
Sermet Can Beylikci

Salgam (Şalgam, shalgam) is our conventional fermented purple carrot beverage. Purple carrot (Daucus carota) is the basic raw material, and other raw materials used in the production are sourdough/ bakers’ yeast, salt (rock), bulgur flour and/or turnip (Brassica rapa L.). There are two fermentations that occur due to microorganisms (lactic-acid bacteria and yeast) that are effective during production; primarily lactic-acid fermentation and ethyl alcohol fermentation. It is very popular in our country, especially southerly cities of Turkey. Although shalgam is mostly produced and consumed in Mersin/İcel, Osmaniye, Hatay-Antakya and Kahramanmaras cities, the most known and loved city is the Adana. Lately, it has begun to be consumed almost every parts of Turkey. In addition, it is sold in the cities where the densities of the Turks in Europe. The aim of this review article is to give information about the production methods of salgam, scientific studies and recent trends, problems related to salgam and solutions.

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 111
Author(s):  
Mohamed T. Selim ◽  
Salem S. Salem ◽  
Amr Fouda ◽  
Mamdouh S. El-Gamal ◽  
Mohamed Ali Abdel-Rahman

Various challenges facing the industrial production of bio-based lactic acid (LA) such as cost of raw materials and nitrogen sources, as well as contamination risk by mesophilic and neutrophilic producers, should be overcome for the commercial production. This study aimed to investigate the feasibility of corn steep water (CSW) as a raw material for LA production using a newly thermo-alkali-tolerant lactic acid bacterium. The physicochemical characteristics of CSW were investigated. The high carbohydrates, proteins, amino acids, vitamins, essential elements, minerals, and non-protein nitrogenous compounds content confirmed that the CSW is a promising substrate for LA production. Out of 67 bacterial isolates, Enterococcus faecium WH51-1 was selected based on its tolerance to high temperatures and inhibitory compounds (sodium metabisulfate, sodium chloride, sodium acetate, and formic acid). Fermentation factors including sugar concentration, temperature, inoculum size, and neutralizing agents were optimized for LA production. Lactic acid concentration of about 44.6 g/L with a high yield (0.89 ± 0.02 g/g) was obtained using 60 g/L of CSW sugar, inoculum size 10% (v/v), 45 °C, and sodium hydroxide or calcium carbonate as a neutralizing agent. These results demonstrated the potential of strain WH51-1 for LA production using CSW effluent as raw material.


2020 ◽  
pp. 88-92
Author(s):  
V. V. Kondratenko ◽  
N. E. Posokina

Relevance and methodology. Today, white cabbage is the most popular type of vegetable raw materials used for fermentation not only in Russia, but also in other countries. To obtain a variety of flavors and shades of flavor, various vegetables (carrots, sweet peppers), fruit (apples, cranberries) and spicy-aromatic additives (cumin, dill seed, etc.) are added to the cabbage during fermentation. During fermentation, the product contains not only the initial components of the raw material (vitamin C, macro-and micronutrients), but also significantly increases the number of lactic acid microorganisms – the main "participants" in the process.One of the main products of the metabolism of lactic acid microorganisms is lactic acid. At a concentration of 0.5%, it begins to inhibit the development of many microorganisms. When reaching a concentration of 1-2% microbiological enzymatic hydrolysis, as a rule, ceases. The accumulation of acetic acid allows us to judge the intensity of the heterofermentative stage of fermentation using strains of lactic acid microorganisms.Results. The L. plantarum + L. casei consortium has shown a synergistic interaction in the accumulation of lactic acid, since the amount of acid produced by the consortium significantly exceeds the amount of acid produced by each strain separately. This point is also noted for the accumulation of acetic acid. In the L. brevis + L. casei consortium, the opposite situation is observed: when using cultures separately, the accumulation of lactic acid occurs to a greater extent than when using two cultures simultaneously. There are no obvious differences between monocultures and the consortium in terms of acetic acid accumulation. In the case of the L. plantarum + L. brevis consortium, we observe a synergistic interaction, with the dominant role in this consortium played by L. plantarum, and the contribution of L. brevis to the accumulation of lactic acid is insignificant. At the same time, the total resulting accumulation of acetic acid is significantly less than the result of each strain separately, which may indicate a negative mutual effect of the participants in the process. Acid degradation of the polysaccharide matrix of cell walls does not occur during the entire fermentation process.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Prabin Koirala ◽  
Ndegwa Henry Maina ◽  
Hanna Nihtilä ◽  
Kati Katina ◽  
Rossana Coda

Abstract Background Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. Results The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. Conclusions Selected lactic acid bacteria starters produced significant amount of dextran in brewers’ spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


2008 ◽  
Vol 71 (8) ◽  
pp. 1724-1733 ◽  
Author(s):  
SUSAN ROUSE ◽  
DOUWE VAN SINDEREN

Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.


REAKTOR ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 79
Author(s):  
Abdullah Abdullah ◽  
H. B. Mat

The liquid pineapple waste contain mainly sucrose, glucose, fructose, and other nutrients. It therefore can potentiall be used as carbon source for organic acid fermentation. Recently, lactic acid has been considered to be an important raw material for production of biodegradadable lactace polymer. The experiments weree carried out in shake flash fermentation using lactobacillus delbroeckii. Effect of some parameters such as temperature, initial Ph, initial substrate concentration, yeast extract concentration and fermentation time to the yield have been studied. The highest yield was 85.65% achieved at 40 0C, PH 6.00, 52.2 g/l sugar concentration with 5 g/l yeast extract. There was no significant increasing in lactic acid production was observed if supplementation of yeast extract above 10%.Keyword : lactic acid fermentation, liquid pineapple waste, lactobacillus delbrueckii


Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 473-480 ◽  
Author(s):  
K. C. P. Faria ◽  
J. N. F. Holanda

The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA). This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength) as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles) in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.


Author(s):  
Patrick Degryse ◽  
Dennis Braekmans

Petrography has developed into an indispensable tool for ceramic fabric analysis, specifically studying the mineralogical and textural composition of ceramic objects. Petrography is a technique commonly used in geology to describe and classify rocks. Ceramic petrography studies clay-based archaeological or historical materials. Using a polarizing light microscope (PLM) in ceramic studies, the different raw materials used to make a ceramic object can be identified, ranging from clays and other minerals to rock fragments and inorganic or organic temper. The technique moreover feeds into the study of raw material provenance and origin, and is able to discern the different technological procedures followed to make the ceramic object (from shaping to firing), next to providing clues on the function of the object. This information not only helps reconstruct trade and exchange of raw materials and ceramics, but aids in reconstructing society behind the pot.


LWT ◽  
1994 ◽  
Vol 27 (4) ◽  
pp. 337-341 ◽  
Author(s):  
Thea W. Aukrust ◽  
Hans Blom ◽  
Beate F. Sandtory ◽  
Erik Slinde

Author(s):  
Magdalena Śmiglak-Krajewska

The main purpose of this paper was to identify the factors affecting the selection of raw materials used by feed operators in feed production. An attempt was also made to indicate the barriers to increasing the use of native protein plants by feed operators in feed production. Today, many EU countries (including Poland) primarily rely on vegetable protein derived from genetically modified soya bean meal (mainly imported from South America and the U.S.) in addressing their needs for protein raw material used in animal feed. For many years now, Poland has taken steps to increase the production and use of native protein raw material to partially replace soya bean meal imports. The use of mixes of diverse domestic protein sources derived from grain legumes (peas, field beans, lupine) can provide an advantageous alternative to compound feeding stuff based on imported post-extraction soya bean meal. To meet the objective defined above, this paper relied on the results of a 2018 survey conducted with a sample of 29 feed operators located across the country. More than half (55%) of the enterprises surveyed did not use legumes in feed production; the use of legumes was above 10% in only 3% of respondents. When asked about the key factors affecting the selection of raw materials used in production processes, the respondents declared to be interested in buying large batches of homogeneous raw materials that meet specific quality parameters (33% replied “rather yes” and 67% replied “definitely yes”). The protein content of plant seeds used in feed production was identified as another aspect of extreme importance (55% replied “rather yes” and 24% replied “definitely yes”).


Sign in / Sign up

Export Citation Format

Share Document