MODEL OUTPUT STATISTICS DENGAN PRINCIPAL COMPONENT REGRESSION, PARTIAL LEAST SQUARE REGRESSION, DAN RIDGE REGRESSION UNTUK KALIBRASI PRAKIRAAN CUACA JANGKA PENDEK
Penelitian ini merupakan upaya pengembangan Model Output Statistics (MOS) yang akan digunakan sebagai alat kalibrasi prakiraan cuaca jangka pendek. Informasi mengenai prakiraan cuaca yang akurat diharapkan dapat meminimalkan risiko kecelakaan yang disebabkan oleh cuaca, khususnya dalam bidang transportasi udara dan laut. Metode yang akan dikembangkan mencakup beberapa stasiun pengamatan cuaca di Indonesia. MOS merupakan sebuah metode berbasis regresi yang mengoptimalkan hubungan antara observasi cuaca dan luaran model Numerical Weather Predictor (NWP). Beberapa masalah yang muncul kaitannya dengan MOS adalah; mereduksi dimensi luaran NWP, mendapatkan variabel prediktor yang mampu menjelaskan variabilitas variabel respon, dan menentukan metode statistik yang sesuai dengan karakteristik data, sehingga dapat menggambarkan hubungan antara variabel respon dan variabel prediktor. Tujuan dari penelitian ini yaitu untuk mendapatkan pemodelan MOS yang sesuai untuk variabel respon suhu maksimum, suhu minimum, dan kelembapan udara. Metode regresi yang digunakan adalah Principal Component Regression (PCR), Partial Least Square Regression (PLSR), dan ridge regression. Selanjutnya, model MOS yang terbentuk divalidasi dengan kriteria Root Mean Square Error (RMSE) dan Percentage Improval (IM%). MOS mampu mengoreksi bias prakiraan NWP hingga lebih dari 50%. Berdasarkan RMSE terkecil pada penelitian ini, suhu maksimum lebih akurat diprakirakan menggunakan model PLSR, sementara suhu minimum dan kelembapan udara lebih akurat diprakirakan menggunakan ridge regression.Kata Kunci: cuaca, MOS, NWP.