scholarly journals Treatment of Al Doura Oil Refinery Wastewater Turbidity using Magnetic Flocculation

Author(s):  
Muzher Al doury ◽  
Hadeel Al samerrai

The use of conventional flocculants such as Aluminum sulphate (Alum) alone to treat the wastewater may be insufficient to get the required turbidity, suspended solids removal as well as it requires relatively a long residence time. Magnetic flocculation is one of the used techniques for increase the efficiency of the turbidity removal. In the present study, three sets of experiments are carried out in order to investigate the possibility of increasing the suspended solid removal efficiency from Al Doura oil refinery wastewater using iron oxide (Fe3O4), Nickel (Ni), and Cobalt (Co) ferromagnetic powders with alum. The following operating conditions namely, pH, alum dose, ferromagnetic powder dose, and initial turbidity are studied. The results revealed that an improvement in turbidity removal efficiency is satisfied, as well as, a reasonable reduction in the sedimentation period is achieved. The highest turbidity removal is 99.88% that obtained for 122NTU sample for alum dose 120 mg/L+ Nickel dose of 80mg/L and pH of 6.5.

1989 ◽  
Vol 21 (4-5) ◽  
pp. 23-28
Author(s):  
Kean Kee Chin

A 150ℓ field unit and two 7.5ℓ laboratory scale sequencing batch reactors (SBRs) were used to polish edible oil refinery wastewater pretreated by attached film anaerobic reactors. SBRs performed well with respect to COD and suspended solids removal. At a loading rate of less than 2 kg COD/m3-d more than 90% COD removal efficiency was achieved. Solids settling was good with SVI generally less than 160. The system showed stability under large variations of organic loading and operating conditions. A significant amount of COD was removed during the long filling and anoxic period.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 214 ◽  
Author(s):  
Emmanuel K. Tetteh ◽  
Elorm Obotey Ezugbe ◽  
Sudesh Rathilal ◽  
Dennis Asante-Sackey

Advanced oxidation processes (AOPs) have many prospects in water and wastewater treatment. In recent years, AOPs are gaining attention as having potentials for the removal of different ranges of contaminants from industrial wastewater towards water reclamation. In this study, the treatability efficiencies of two photo-catalysts (TiO2 and zeolite) were compared on the basis of the removal of chemical oxygen demand (COD) and SO42− from oil refinery wastewater (ORW) using photo-catalytic system. The effects of three operating parameters: catalyst dosage (0.5–1.5 g/L), reaction time (15–45 min), mixing rate (30–90 rpm) and their interactive effects on the removal of the aforementioned contaminants were studied using the Box–Behnken design (BBD) of response surface methodology (RSM). Statistical models were developed and used to optimize the operating conditions. An 18 W UV light was incident on the system to excite the catalysts to trigger a reaction that led to the degradation and subsequent removal of contaminants. The results obtained showed that for almost the same desirability (92% for zeolite and 91% for TiO2), TiO2 exhibited more efficiency in terms of mixing rate and reaction time requirements. At the 95% confidence level, the model’s predicted results were in good agreement with experimental data obtained.


2016 ◽  
Vol 51 (4) ◽  
pp. 377-387 ◽  
Author(s):  
Kshitij Ranjan ◽  
Shubhrasekhar Chakraborty ◽  
Mohini Verma ◽  
Jawed Iqbal ◽  
R. Naresh Kumar

Sequencing batch reactor (SBR) was assessed for direct co-treatment of old landfill leachate and municipal wastewater for chemical oxygen demand (COD), nutrients and turbidity removal. Nitrogen removal was achieved by sequential nitrification and denitrification under post-anoxic conditions. Initially, SBR operating conditions were optimized by varying hydraulic retention time (HRT) at 20% (v/v) landfill leachate concentration, and results showed that 6 d HRT was suitable for co-treatment. SBR performance was assessed in terms of COD, ammonia, nitrate, phosphate, and turbidity removal efficiency. pH, mixed liquor suspended solids, mixed liquor volatile suspended solids (MLVSS), and sludge volume index were monitored to evaluate stability of SBR. MLVSS indicated that biomass was able to grow even at higher concentrations of old landfill leachate. Ammonia and nitrate removal efficiency was more than 93% and 83%, respectively, whereas COD reduction was in the range of 60–70%. Phosphate and turbidity removal efficiency was 80% and 83%, respectively. Microbial growth kinetic parameters indicated that there was no inhibition of biomass growth up to 20% landfill leachate. The results highlighted that SBR can be used as an initial step for direct co-treatment of landfill leachate and municipal wastewater.


2011 ◽  
Vol 63 (1) ◽  
pp. 143-148 ◽  
Author(s):  
E. E. Schneider ◽  
A. C. F. P. Cerqueira ◽  
M. Dezotti

This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (VB/VR) of 0.6. COD and N-NH4+ MBBR effluent concentrations ranged from 40 to 75 mg L−1 (removal efficiency of 69–89%) and 2 to 6 mg L−1 (removal efficiency of 45–86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L−1 was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1–3.8 mg L−1, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.


2018 ◽  
Vol 8 (3) ◽  
pp. 438 ◽  
Author(s):  
Hasna Addi ◽  
Francisco Mateo-Ramírez ◽  
Víctor Ortiz-Martínez ◽  
María Salar-García ◽  
Francisco Hernández-Fernández ◽  
...  

1986 ◽  
Vol 18 (9) ◽  
pp. 105-114 ◽  
Author(s):  
D. Misković ◽  
B. Dalmacija ◽  
Ž Živanov ◽  
E. Karlović ◽  
Z. Hain ◽  
...  

The objective of the present investigation was a high level of purification of the wastewater from an oil refinery achieved by using some improved methods yielding an effluent suitable for recycling into the process. All the investigations were carried out on a continuous laboratory pilot system consisting of the following units: dissolved air flotation (DAF), sedimentation, double-stage microbiological reactor, and adsorption columns filled with granular biologically activated carbon (GBAC). A high degree of COD reduction close to 100% (precisely, 99.95 %), as well as removal of nitrogen compounds of 72% was achieved during a relatively short retention time within the range of 15-16.5 hrs. The DAF technique combined with gravitational separation was used to achieve the recovery of free oil matter up to 98%, without any preliminary conditioning. After the sedimentation of coagulated and flocculated dispersed oils, the microbiological oxidation of dissolved matter was accomplished by using two kinds of activated sludge for easy and hard degradable organics. Using the continuously bioregenerating GBAC, an effluent having a lowered COD value to about 9 was obtained. At the same time, the denitrification process took place. According to the obtained results the treated oil refinery wastewater can be recycled into the process, or discharged into a water recipient of a low self-purifying capacity.


2018 ◽  
Vol 78 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Behnam Heidari ◽  
Mohsen Soleimani ◽  
Nourollah Mirghaffari

Abstract The Fenton process is a useful and inexpensive type of advanced oxidation process for industrial wastewater treatment. This study was performed with the aim of using the steel slag as a catalyst in the heterogeneous Fenton process in order to reduce the chemical oxygen demand (COD) of oil refinery wastewater. The effects of various parameters including the reaction time (0.5, 1.0, 2.0, 3.0 and 4.0 h), pH (2.0, 3.0, 4.0, 5.0, 6.0 and 7.0), the concentration of steel slag (12.5, 25.0 and 37.5 g/L), and H2O2 concentration (100, 250, 400 and 500 mg/L) on the Fenton process were investigated. Furthermore, the effect of microwave irradiation on the process efficiency was studied by considering the optimum conditions of the mentioned parameters. The results showed that using 25.0 g/L of steel slag and 250 mg/L H2O2, at pH = 3.0, could reduce COD by up to 64% after 2.0 h. Also, microwave irradiation decreased the time of the process from 120 min to 25 min in the optimum conditions, but it consumed a high amount of energy. It could be concluded that steel slags had a high potential in the treatment of oil refinery wastewater through the Fenton process.


Sign in / Sign up

Export Citation Format

Share Document