Solving the optimal control problem using a nonlinear programming technique. II - Optimal Shuttle ascent trajectories

Author(s):  
T. BAUER ◽  
J. BETTS ◽  
W. HALLMAN ◽  
W. HUFFMAN ◽  
K. ZONDERVAN
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Alberto Olivares ◽  
Ernesto Staffetti

The time-optimal control problem of a spacecraft equipped with reaction wheels has been studied, in which the spacecraft is constrained to sequentially assume a set of attitudes, whose order is not specified. This attitude scheduling problem has been solved as a multiphase mixed-integer optimal control problem in which binary functions have been introduced to model the choice of the optimal sequence of target attitudes and to enforce the constraint of adopting once and only once each attitude. Given the dynamic model of the spacecraft, the initial and final attitudes, and a set of target attitudes, solving this problem consists in finding the control inputs, the sequence of attitudes with the corresponding passage times, and the resulting trajectory of the spacecraft that minimize the time of the maneuver. The multiphase mixed-integer optimal control problem has been converted into a mixed-integer nonlinear programming problem first making the unknown passage times through the target attitudes part of the state, then introducing binary variables to discretize the binary functions, and finally applying a fifth-degree Gauss-Lobatto direct collocation method to tackle the dynamic constraints. The resulting problem has been solved using a nonlinear programming-based branch-and-bound algorithm.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document