Two-stage heater for a Mach 0 to 8 free-jet engine test facility

1998 ◽  
Author(s):  
Robert Engers ◽  
John Erdos ◽  
William Swartwout ◽  
Nicholas Tilakos
Author(s):  
Yang Ji Lee ◽  
Sang Hun Kang ◽  
Soo Seok Yang

Korea Aerospace Research Institute started on design and development of a hypersonic air-breathing engine test facility from 2000 and completed the test facility installation in July 2009. This facility, designated as the Scramjet engine test facility (SETF), is a blow-down type high enthalpy wind tunnel which has a pressurized air supply system, air heater system, free-jet type test chamber, fuel supply system, facility control/measurement system, and exhaust system with an air ejection. Unlike most aerodynamic wind-tunnel, SETF should simulate the enthalpy condition at a flight condition. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a storage air heater (SAH) type heating system. This SAH can supply a hot air with a maximum temperature of 1300K. Using the SAH, SETF can achieve the Mach 5.0 flight at an altitude of 20 km condition. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using the facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In 2009, a Mach 3.5 test of SETF was done for acceptance testing which is a maximum air supply condition of 20 kg/s. SETF showed the facility efficiency of a 100% without a test model at the Mach 3.5 condition. In 2010, a Mach 6.7 aerodynamic test campaign with a scramjet engine intake. But SETF could not start at the Mach 6.7 condition with the existing ejector system at that time. To get a facility starting, we modified the ejector system. After modification of the ejector system, SETF started at the Mach 6.7 condition with a facility efficiency of 58%. In this paper, the starting characteristics of the SETF with various flight conditions, and modifications of the ejector system will be described.


Author(s):  
Jun Zhou ◽  
Li Shen ◽  
Tianhong Zhang

AbstractSimulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.


1992 ◽  
Author(s):  
HIROSHI MIYAJIMA ◽  
NOBUO CHINZEI ◽  
TOHRU MITANI ◽  
YOSHIO WAKAMATSU ◽  
MASATAKA MAITA

Author(s):  
Martin Marx ◽  
Michael Kotulla ◽  
André Kando ◽  
Stephan Staudacher

To ensure the quality standards in engine testing, a growing research effort is put into the modeling of full engine test cell systems. A detailed understanding of the performance of the combined system, engine and test cell, is necessary e.g. to assess test cell modifications or to identify the influence of test cell installation effects on engine performance. This study aims to give solutions on how such a combined engine and test cell system can be effectively modeled and validated in the light of maximized test cell observability with minimum instrumentation and computational requirements. An aero-thermodynamic performance model and a CFD model are created for the Fan-Engine Pass-Off Test Facility at MTU Maintenance Berlin-Brandenburg GmbH, representing a W-shape configuration, indoor Fan-Engine test cell. Both models are adjusted and validated against each other and against test cell instrumentation. A fast-computing performance model is delivering global parameters, whereas a highly-detailed aerodynamic simulation is established for modeling component characteristics. A multi-disciplinary synthesis of both approaches can be used to optimize each of the specific models by calibration, optimized boundary conditions etc. This will result in optimized models, which, in combination, can be used to assess the respective design and operational requirements.


2017 ◽  
Vol 36 (12) ◽  
pp. 1286-1311 ◽  
Author(s):  
Siddharth Choudhary ◽  
Luca Carlone ◽  
Carlos Nieto ◽  
John Rogers ◽  
Henrik I Christensen ◽  
...  

We consider the following problem: a team of robots is deployed in an unknown environment and it has to collaboratively build a map of the area without a reliable infrastructure for communication. The backbone for modern mapping techniques is pose graph optimization, which estimates the trajectory of the robots, from which the map can be easily built. The first contribution of this paper is a set of distributed algorithms for pose graph optimization: rather than sending all sensor data to a remote sensor fusion server, the robots exchange very partial and noisy information to reach an agreement on the pose graph configuration. Our approach can be considered as a distributed implementation of a two-stage approach that already exists, where we use the Successive Over-Relaxation and the Jacobi Over-Relaxation as workhorses to split the computation among the robots. We also provide conditions under which the proposed distributed protocols converge to the solution of the centralized two-stage approach. As a second contribution, we extend the proposed distributed algorithms to work with the object-based map models. The use of object-based models avoids the exchange of raw sensor measurements (e.g. point clouds or RGB-D data) further reducing the communication burden. Our third contribution is an extensive experimental evaluation of the proposed techniques, including tests in realistic Gazebo simulations and field experiments in a military test facility. Abundant experimental evidence suggests that one of the proposed algorithms (the Distributed Gauss–Seidel method) has excellent performance. The Distributed Gauss–Seidel method requires minimal information exchange, has an anytime flavor, scales well to large teams (we demonstrate mapping with a team of 50 robots), is robust to noise, and is easy to implement. Our field tests show that the combined use of our distributed algorithms and object-based models reduces the communication requirements by several orders of magnitude and enables distributed mapping with large teams of robots in real-world problems. The source code is available for download at https://cognitiverobotics.github.io/distributed-mapper/


Sign in / Sign up

Export Citation Format

Share Document