Using computational methods, an investigation was performed on the physical mechanisms leading to vortex breakdown in high angle of attack flows over delta wing geometries. For this purpose, the Second International Vortex Flow Experiment (VFE-2) 65° sweep delta wing model was studied at a root chord Reynolds number (Recr) of 6 × 106 at various angles of attack. The open-source computational fluid dynamics (CFD) solver OpenFOAM was used in parallel with the commercial CFD solver ANSYS® FLUENT. For breadth, a variety of classic closure models were applied, including unsteady Reynolds-averaged Navier-Stokes (URANS) and detached eddy simulation (DES). Results for all cases are analyzed and flow features are identified and discussed. The results show the inception of a pair of leading edge vortices originating at the apex for all models used, and a region of steady vortical structures downstream in the URANS results. However, DES results show regions of massively separated helical flow which manifests after vortex breakdown. Analysis of turbulence quantities in the breakdown region gives further insight into the mechanisms leading to such phenomena.