INFLUENCE OF EXPRESSION OF REL GENE FROM MYCOBACTERIUM SMEGMATIS ON RPOS-LACZ-FUSION ACTIVITY IN ESCHERICHIA COLI

2017 ◽  
Vol 209 (09) ◽  
pp. 91-95
Author(s):  
R.Yu. Sidorov ◽  
◽  
A.G. Tkachenko ◽  
Genetics ◽  
1991 ◽  
Vol 128 (4) ◽  
pp. 695-701 ◽  
Author(s):  
J Cairns ◽  
P L Foster

Abstract Mutation rates are generally thought not to be influenced by selective forces. This doctrine rests on the results of certain classical studies of the mutations that make bacteria resistant to phages and antibiotics. We have studied a strain of Escherichia coli which constitutively expresses a lacI-lacZ fusion containing a frameshift mutation that renders it Lac-. Reversion to Lac+ is a rare event during exponential growth but occurs in stationary cultures when lactose is the only source of energy. No revertants accumulate in the absence of lactose, or in the presence of lactose if there is another, unfulfilled requirement for growth. The mechanism for such mutation in stationary phase is not known, but it requires some function of RecA which is apparently not required for mutation during exponential growth.


1990 ◽  
Vol 12 (9) ◽  
pp. 656-662 ◽  
Author(s):  
Geoffrey P. Hazlewood ◽  
Keith Davidson ◽  
Jonathan H. Clarke ◽  
Alastair J. Durrant ◽  
Judith Hall ◽  
...  

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Zohar B. Weinstein ◽  
Muhammad H. Zaman

ABSTRACT Poor-quality medicines undermine the treatment of infectious diseases, such as tuberculosis, which require months of treatment with rifampin and other drugs. Rifampin resistance is a critical concern for tuberculosis treatment. While subtherapeutic doses of medicine are known to select for antibiotic resistance, the effect of drug degradation products on the evolution of resistance is unknown. Here, we demonstrate that substandard drugs that contain degraded active pharmaceutical ingredients select for gene alterations that confer resistance to standard drugs. We generated drug-resistant Escherichia coli and Mycobacterium smegmatis strains by serially culturing bacteria in the presence of the rifampin degradation product rifampin quinone. We conducted Sanger sequencing to identify mutations in rifampin-resistant populations. Strains resistant to rifampin quinone developed cross-resistance to the standard drug rifampin, with some populations showing no growth inhibition at maximum concentrations of rifampin. Sequencing of the rifampin quinone-treated strains indicated that they acquired mutations in the DNA-dependent RNA polymerase B subunit. These mutations were localized in the rifampin resistance-determining region (RRDR), consistent with other reports of rifampin-resistant E. coli and mycobacteria. Rifampin quinone-treated mycobacteria also had cross-resistance to other rifamycin class drugs, including rifabutin and rifapentine. Our results strongly suggest that substandard drugs not only hinder individual patient outcomes but also restrict future treatment options by actively contributing to the development of resistance to standard medicines.


1983 ◽  
Vol 192 (3) ◽  
pp. 391-394 ◽  
Author(s):  
Koji Nakayama ◽  
Nobuto Irino ◽  
Hiroaki Nakayama

2013 ◽  
Vol 62 (7) ◽  
pp. 959-967 ◽  
Author(s):  
Jayapal Jeya Maheshwari ◽  
Kuppamuthu Dharmalingam

The aim of this study is to examine the in vivo role of a small heat-shock protein (sHsp18) from Mycobacterium leprae in the survival of heterologous recombinant hosts carrying the gene encoding this protein under different environmental conditions that are normally encountered by M. leprae during its infection of the human host. Using an Escherichia coli system where shsp18 expression is controlled by its native promoter, we show that expression of shsp18 is induced under low oxygen tension, nutrient depletion and oxidative stress, all of which reflect the natural internal environment of the granulomas where the pathogen resides for long periods. We demonstrate the in vivo chaperone activity of sHsp18 through its ability to confer survival advantage to recombinant E. coli at heat-shock temperatures. Additional evidence for the protective role of sHsp18 was obtained when Mycobacterium smegmatis harbouring a copy of shsp18 was found to multiply better in human macrophages. Furthermore, the autokinase activity of sHsp18 protein demonstrated for what is believed to be the first time in this study implies that some of the functions of sHsp18 might be controlled by the phosphorylation state of this protein. Results from this study suggest that shsp18 might be one of the factors that facilitate the survival and persistence of M. leprae under stress and autophosphorylation of sHsp18 protein could be a mechanism used by this protein to sense changes in the external environment.


Gene ◽  
1988 ◽  
Vol 62 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Margareta Kolar ◽  
Peter J. Punt ◽  
Cees A.M.J.J. van den Hondel ◽  
Helmut Schwab

Sign in / Sign up

Export Citation Format

Share Document