dna gyrase
Recently Published Documents


TOTAL DOCUMENTS

1212
(FIVE YEARS 233)

H-INDEX

85
(FIVE YEARS 8)

BMC Chemistry ◽  
2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Mona Fekadu ◽  
Digafie Zeleke ◽  
Bayan Abdi ◽  
Anuradha Guttula ◽  
Rajalakshmanan Eswaramoorthy ◽  
...  

Abstract Background Quinolines have demonstrated various biological activities such as antimalarial, antibacterial and anticancer. Hence, compounds with such scaffold have been used as lead in drug development. This project is, therefore, aimed to synthesis and evaluates some biological activities of quinoline analogs. Methods 2-Chloro-7-fluoroquinoline-3-carbaldehydes were synthesized by the application of Vilsmeier–Haack reaction. The chlorine in the fluoroquinoline-3-carbaldehyde was replaced with various nucleophiles. The aldehyde functional group was also converted to carboxylic acid and imine groups using oxidizing agent and various amines, respectively. The structures of the compounds synthesized were characterized by spectroscopic methods. Disc diffusion and DPPH assays were used to evaluate the antibacterial and antioxidant activities, respectively. The in silico molecular docking analysis of the synthesized compounds were done using AutoDock Vina against E. coli DNA Gyrase B and human topoisomerase IIα. The drug likeness properties were assessed using SwissADME and PreADMET. Results Nine novel quinoline derivatives were synthesized in good yields. The in vitro antibacterial activity of the synthesized compounds was beyond 9.3 mm inhibition zone (IZ). Compounds 4, 5, 6, 7, 8, 10, 15, and 16 exhibited activity against E. coli, P. aeruginosa, S. aureus and S. pyogenes with IZ ranging from 7.3 ± 0.67 to 15.3 ± 0.33 mm at 200 μg/mL. Compound 9 displayed IZ against three of the bacterial strains except S. aureus. The IC50 for the radical scavenging activity of the synthesized compounds were from 5.31 to 16.71 μg/mL. The binding affinities of the synthesized compounds were from − 6.1 to − 7.2 kcal/mol against E. coli DNA gyrase B and − 6.8 to − 7.4 kcal/mol against human topoisomerase IIα. All of the synthesized compounds obeyed Lipinski’s rule of five without violation. Conclusion Compounds 4, 5, 6, 7, 8, 10, 15, and 16 displayed activity against Gram positive and Gram negative bacterial strains indicating that these compounds might be used as broad spectrum bactericidal activity. Compound 8 (13.6 ± 0.22 mm) showed better IZ against P. aeruginosa compared with ciprofloxacin (10.0 ± 0.45 mm) demonstrating the potential of this compound as antibacterial agent against this strain. Compounds 5, 6, 7, 8, 9 and 10 showed comparable binding affinities in their in silico molecular docking analysis against E. coli DNA gyrase B. All of the synthesized compounds also obeyed Lipinski’s rule of five without violation which suggests these compounds as antibacterial agents for further study. Compounds 7 and 8 were proved to be a very potent radical scavenger with IC50 values of 5.31 and 5.41 μg/mL, respectively. Compound 5, 6, 8, 10 and 16 had comparable binding affinity against human topoisomerase IIα suggesting these compounds as a possible candidate for anticancer drugs.


Author(s):  
Wassihun Wedajo Aragaw ◽  
Nicole Cotroneo ◽  
Suzanne Stokes ◽  
Michael Pucci ◽  
Ian Critchley ◽  
...  

Clinical emergence of resistance to new antibiotics affects their utility. Characterization of in vitro resistance is a first step in the profiling of resistance properties of novel drug candidates.


2022 ◽  
Vol 18 ◽  
Author(s):  
Hamideh. Emtiazi ◽  
Ali Salari Sharif ◽  
Mina Ardestani

Background: Pyranopyrazoles have a variety of biological activities and can be obtained by various starting materials and synthetic methods. Also, pyrazolopyrano[2,3-b]quinolins that contain pyranopyrazole moiety, have some biological activities such as anti acetylcholinesterase, anti butyrylcholinesterase activity. In this research, our objective is to prepare pyranopyrazole compounds and pyrazolopyrano[2,3-b]quinolins in a simple way and then evaluate their antibacterial effect. Methods: In this study, pyrano[2,3-c]pyrazole derivatives have been synthesized by condensing malononitrile, aromatic aldehydes, and 3-methyl-1-phenyl-2-pyrazolin-5-one in the presence of magnesium perchlorate as a catalyst. Then we prepared pyrazolopyrano[2,3-b]quinolins via subsequent Friedlander reaction between cyclohexanone and the obtained pyrano[2,3-c]pyrazoles. Also, the antimicrobial activity of the synthesized pyrazolopyrano[2,3-b]quinolins against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli were measured. Then we studied molecular docking of them to find the predicted compounds' interactions and binding energy with DNA-gyrase with the AutoDock 4.2 software. Results: Pyrazolopyrano[2,3-b]quinolins were synthesized in optimized conditions. Evaluation of their antibacterial activities showed that these compounds have moderate to good antibacterial activities against four bacteria species. Also molecular docking tests of docked compounds showed a strong bonding interaction with DNA-Gyrase and had been docked into the intercalation place of DNA of DNA-gyrase complex. The molecule bounded to the DNA stabilized by the H bonds, hydrophobic interactions, and π-π interaction. Conclusion: We have developed an efficient and one-pot ecofriendly protocol for the synthesis of some novel pyrano[2,3-c]pyrazol derivatives and pyrazolopyrano[2,3-b]quinolins under simple conditions and then tested them for their antibacterial activities. Also, we studied molecular docking of them. These compounds showed moderate to good inhibitory action.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Neveen M. Saleh ◽  
Yasmine S. Moemen ◽  
Sara H. Mohamed ◽  
Ghady Fathy ◽  
Abdullah A. S. Ahmed ◽  
...  

DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1a–e and 2a–e) as DNA gyrase inhibitors. The synthesized compounds were screened for their activity (antibacterial and DNA gyrase inhibition) against ciprofloxacin-resistant E.coli and Klebsiella pneumoniae clinical isolates having mutations (deletion and substitution) in QRDR region of DNA gyrase. The target compound (2a) that exhibited the most potent activity against ciprofloxacin Gram-negative clinical isolates was selected to screen its inhibitory activity against DNA gyrase displayed IC50 of 12.03 µM. In addition, a docking study was performed with inhibitor (2a), to illustrate its binding mode in the active site of DNA gyrase and the results were compatible with the observed inhibitory potency. Furthermore, the docking study revealed that the binding of inhibitor (2a) to DNA gyrase is mediated and modulated by divalent Mg2+ at good binding energy (–9.08 Kcal/mol). Moreover, structure-activity relationships (SARs) demonstrated that the combination of hydrazinyl moiety in conjunction with the cyclic diphenylphosphonate based scaffold resulted in an optimized molecule that inhibited the bacterial DNA gyrase by its detectable effect in vitro on gyrase-catalyzed DNA supercoiling activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bayan Abdi ◽  
Mona Fekadu ◽  
Digafie Zeleke ◽  
Rajalakshmanan Eswaramoorthy ◽  
Yadessa Melaku

Quinoline heterocycle is a useful scaffold to develop bioactive molecules used as anticancer, antimalaria, and antimicrobials. Inspired by their numerous biological activities, an attempt was made to synthesize a series of novel 7-chloroquinoline derivatives, including 2,7-dichloroquinoline-3-carbonitrile (5), 2,7-dichloroquinoline-3-carboxamide (6), 7-chloro-2-methoxyquinoline-3-carbaldehyde (7), 7-chloro-2-ethoxyquinoline-3-carbaldehyde (8), and 2-chloroquinoline-3-carbonitrile (12) by the application of Vilsmeier–Haack reaction and aromatic nucleophilic substitution of 2,7-dichloroquinoline-3-carbaldehyde. The carbaldehyde functional group was transformed into nitriles using POCl3 and NaN3, which was subsequently converted to amide using CH3CO2H and H2SO4. The compounds synthesized were screened for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes. Compounds 6 and 8 showed good activity against E. coli with an inhibition zone of 11.00 ± 0.04 and 12.00 ± 0.00 mm, respectively. Compound 5 had good activity against S. aureus and P. aeruginosa with an inhibition zone of 11.00 ± 0.03 mm relative to standard amoxicillin (18 ± 0.00 mm). Compound 7 displayed good activity against S. pyogenes with an inhibition zone of 11.00 ± 0.02 mm. The radical scavenging activity of these compounds was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and compounds 5 and 6 displayed the strongest antioxidant activity with IC50 of 2.17 and 0.31 µg/mL relative to ascorbic acid (2.41 µg/mL), respectively. The molecular docking study of the synthesized compounds was conducted to investigate their binding pattern with topoisomerase IIβ and E. coli DNA gyrase B. Compounds 6 (−6.4 kcal/mol) and 8 (−6.6 kcal/mol) exhibited better binding affinity in their in silico molecular docking against E. coli DNA gyrase. The synthesized compounds were also found to have minimum binding energy ranging from −6.9 to −7.3 kcal/mol against topoisomerase IIβ. The SwissADME predicted results showed that the synthesized compounds 5–8 and 12 satisfy Lipinski’s rule of five with zero violations. The ProTox-II predicted organ toxicity results revealed that all the synthesized compounds were inactive in hepatotoxicity, immunotoxicity, mutagenicity, and cytotoxicity. The findings of the in vitro antibacterial and molecular docking analysis suggested that compound 8 might be considered a hit compound for further analysis as antibacterial and anticancer drug. The radical scavenging activity displayed by compounds 5 and 6 suggests these compounds as a radical scavenger.


2021 ◽  
Author(s):  
Kyle Orritt ◽  
Juliette Newell ◽  
Lipeng Feng ◽  
Thomas Germe ◽  
Lauren Abbott ◽  
...  

By 2050 it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, costing the world economy $100 trillion. Clearly, strategies to address this problem are required as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy, as this site is distinct from the fluoroquinolone-DNA site binding site. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by the published thiophene allosteric inhibitor. This series was evaluated in vitro against E. coli DNA gyrase, exhibiting IC50 values in the low micromolar range. The structure-activity relationship reported herein suggests insights to further exploit this allosteric site, offering a pathway to overcome fluoroquinolone resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Andiyappan Kistan ◽  
Balakrishnan Anna Benedict ◽  
Sundaramoorthy Vasanthan ◽  
Alphonse PremKumar ◽  
Malathi Kullappan ◽  
...  

Emergence of antibiotic-resistant Mycobacterium tuberculosis (M. tuberculosis) restricts the availability of drugs for the treatment of tuberculosis, which leads to the increased morbidity and mortality of the disease worldwide. There are many intrinsic and extrinsic factors that have been reported for the resistance mechanism. To overcome such mechanisms, chemically synthesized benzaldehyde thiosemicarbazone derivatives were screened against M. tuberculosis to find potential inhibitor for tuberculosis. Such filtering process resulted in compound 13, compound 21, and compound 20 as the best binding energy compounds against DNA gyrase B, an important protein in the replication process. The ADMET prediction has shown the oral bioavailability of the novel compounds.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1506
Author(s):  
Béla Kocsis ◽  
Dániel Gulyás ◽  
Dóra Szabó

Novel antimicrobial agents, approved for clinical use in past years, represent potential treatment options for various infections. In this review, we summarize the most important medical and microbiological features of three recently approved fluoroquinolones, namely delafloxacin, finafloxacin, and zabofloxacin. Delafloxacin possesses an anionic chemical structure, and represents broad-spectrum activity, as it targets both bacterial DNA gyrase and topoisomerase IV enzymes of gram-positive and gram-negative bacteria with equal affinity. Its molecular surface is larger than that of other fluoroquinolones, and it has enhanced antibacterial efficacy in acidic environments. Delafloxacin has been approved to treat acute bacterial skin and skin-structure infections, as well as community-acquired bacterial pneumonia. Finafloxacin has a zwitterionic chemical structure, and targets both DNA gyrase and topoisomerase IV enzymes. This enables a broad antibacterial spectrum; however, finafloxacin has so far only been approved in ear-drops to treat bacterial otitis externa. Zabofloxacin is also a broad-spectrum fluoroquinolone agent, and was first approved in South Korea to treat acute bacterial exacerbation of chronic obstructive pulmonary disease. The introduction of these novel fluoroquinolones into daily practice extends the possible indications of antibiotics into different bacterial infections, and provides treatment options in difficult-to-treat infections. However, some reports of delafloxacin resistance have already appeared, thus underlining the importance of the prudent use of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document