scholarly journals Analysis of lackadaisical quantum walks

2020 ◽  
Vol 20 (13&14) ◽  
pp. 1138-1153
Author(s):  
Peter Hoyer ◽  
Zhan Yu

The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each vertex in the graph. We analytically prove that lackadaisical quantum walks can find a unique marked vertex on any regular locally arc-transitive graph with constant success probability quadratically faster than the hitting time. This result proves several speculations and numerical findings in previous work, including the conjectures that the lackadaisical quantum walk finds a unique marked vertex with constant success probability on the torus, cycle, Johnson graphs, and other classes of vertex-transitive graphs. Our proof establishes and uses a relationship between lackadaisical quantum walks and quantum interpolated walks for any regular locally arc-transitive graph.

Author(s):  
PABLO SPIGA

AbstractIn this paper, we prove that the maximal order of a semiregular element in the automorphism group of a cubic vertex-transitive graph Γ does not tend to infinity as the number of vertices of Γ tends to infinity. This gives a solution (in the negative) to a conjecture of Peter Cameron, John Sheehan and the author [4, conjecture 2].However, with an application of the positive solution of the restricted Burnside problem, we show that this conjecture holds true when Γ is either a Cayley graph or an arc-transitive graph.


10.37236/4626 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\}$, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin–Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.


2009 ◽  
Vol 3 (2) ◽  
pp. 386-394 ◽  
Author(s):  
Letícia Bueno ◽  
Luerbio Faria ◽  
Figueiredo De ◽  
Fonseca Da

Lov?sz conjectured that every connected vertex-transitive graph has a Hamiltonian path. The odd graphs Ok form a well-studied family of connected, k-regular, vertex-transitive graphs. It was previously known that Ok has Hamiltonian paths for k ? 14. A direct computation of Hamiltonian paths in Ok is not feasible for large values of k, because Ok has (2k - 1, k - 1) vertices and k/2 (2k - 1, k - 1) edges. We show that Ok has Hamiltonian paths for 15 ? k ? 18. Instead of directly running any heuristics, we use existing results on the middle levels problem, therefore further relating these two fundamental problems, namely finding a Hamiltonian path in the odd graph and finding a Hamiltonian cycle in the corresponding middle levels graph. We show that further improved results for the middle levels problem can be used to find Hamiltonian paths in Ok for larger values of k.


2013 ◽  
Vol 05 (02) ◽  
pp. 239-250
Author(s):  
HILARY FINUCANE

In this paper, we consider the Voronoi decompositions of an arbitrary infinite vertex-transitive graph G. In particular, we are interested in the following question: what is the largest number of Voronoi cells that must be infinite, given sufficiently (but finitely) many Voronoi sites which are sufficiently far from each other? We call this number the survival number s(G). The survival number of a graph has an alternative characterization in terms of the number of balls of radius r-1 required to cover a sphere of radius r. The survival number is not a quasi-isometry invariant, but it remains open whether finiteness of s(G) is. We show that all vertex-transitive graphs with polynomial growth have finite s(G); vertex-transitive graphs with infinitely many ends have infinite s(G); the lamplighter graph LL(Z), which has exponential growth, has finite s(G); and the lamplighter graph LL(Z2), which is Liouville, has infinite s(G).


Author(s):  
Brendan D. McKay ◽  
Cheryl E. Praeger

AbstractThe Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.


Author(s):  
Agelos Georgakopoulos ◽  
Alex Wendland

AbstractWe generalise the standard constructions of a Cayley graph in terms of a group presentation by allowing some vertices to obey different relators than others. The resulting notion of presentation allows us to represent every vertex-transitive graph.


1975 ◽  
Vol 20 (3) ◽  
pp. 377-384 ◽  
Author(s):  
D. A. Holton ◽  
Douglas D. Grant

AbstractWe show that a graph G is semi-stable at vertex v if and only if the set of vertices of G adjacent to v is fixed by the automorphism group of Gv, the subgraph of G obtained by deleting v and its incident edges. This result leads to a neat proof that regular graphs are semi-stable at each vertex. We then investigate stable regular graphs, concentrating mainly on stable vertex-transitive graphs. We conjecture that if G is a non-trivial vertex-transitive graph, then G is stable if and only if γ(G) contains a transposition, offering some evidence for its truth.


10.37236/3144 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
David E. Roberson

A core of a graph X is a vertex minimal subgraph to which X admits a homomorphism. Hahn and Tardif have shown that for vertex transitive graphs, the size of the core must divide the size of the graph. This motivates the following question: when can the vertex set of a vertex transitive graph be partitioned into sets each of which induce a copy of its core? We show that normal Cayley graphs and vertex transitive graphs with cores half their size always admit such partitions. We also show that the vertex sets of vertex transitive graphs with cores less than half their size do not, in general, have such partitions.


2008 ◽  
Vol 15 (03) ◽  
pp. 379-390 ◽  
Author(s):  
Xuesong Ma ◽  
Ruji Wang

Let X be a simple undirected connected trivalent graph. Then X is said to be a trivalent non-symmetric graph of type (II) if its automorphism group A = Aut (X) acts transitively on the vertices and the vertex-stabilizer Av of any vertex v has two orbits on the neighborhood of v. In this paper, such graphs of order at most 150 with the basic cycles of prime length are investigated, and a classification is given for such graphs which are non-Cayley graphs, whose block graphs induced by the basic cycles are non-bipartite graphs.


Sign in / Sign up

Export Citation Format

Share Document