scholarly journals Ni/Photoredox Dual Catalysis Sulfone Compounds Synthesised with Carbon Nitride as the Semiheterogeneous Photocatalyst

Author(s):  
Yang Liu ◽  
Joost Berkhong

An easily available heterogeneous semiconductor material, g-CN, proved to be feasible when combined with homogeneous nickel catalysts for light-mediated C(sp2)-SO2Ar bond formation of aryl bromides with aryl sulfinates under mild conditions and base-free, unlocking a variety of cross-couplings. The metal-free heterogeneous semiconductor is totally recyclable from reaction system, and experimental results demonstrated a series of differently substituted substrates including electron donating groups and electron withdrawing groups can be tolerated with a satisfactory result. The method could even pro-duce the classic drug Dapsone in large scale, showing strong practical application potential.

2019 ◽  
Author(s):  
Cristian Cavedon ◽  
Amiera Madani ◽  
Peter H. Seeberger ◽  
Bartholomäus Pieber

A carbon nitride material can be combined with homogeneous nickel catalysts for light-mediated cross-couplings of aryl bromides with alcohols under mild conditions. The metal-free heterogeneous semiconductor is fully recyclable and couples a broad range of electron-poor aryl bromides with primary and secondary alcohols as well as water. The application for intramolecular reactions and the synthesis of active pharmaceutical ingredients was demonstrated. The catalytic protocol is applicable for the coupling of aryl iodides with thiols as well. <br>


2019 ◽  
Author(s):  
Cristian Cavedon ◽  
Amiera Madani ◽  
Peter H. Seeberger ◽  
Bartholomäus Pieber

A carbon nitride material can be combined with homogeneous nickel catalysts for light-mediated cross-couplings of aryl bromides with alcohols under mild conditions. The metal-free heterogeneous semiconductor is fully recyclable and couples a broad range of electron-poor aryl bromides with primary and secondary alcohols as well as water. The application for intramolecular reactions and the synthesis of active pharmaceutical ingredients was demonstrated. The catalytic protocol is applicable for the coupling of aryl iodides with thiols as well. <br>


Author(s):  
Lian-Lian Liu ◽  
Fei Chen ◽  
Jing-Hang Wu ◽  
Wen-Wei Li ◽  
Jie-Jie Chen ◽  
...  

Graphitic carbon nitride (gCN) has attracted increasing interests in photocatalysis because of its visible-light-responsive ability, environmental friendliness, low cost and easiness of large-scale production. However, its practical application is restricted...


2014 ◽  
Vol 176 ◽  
pp. 185-197 ◽  
Author(s):  
Nan Wang ◽  
Jian Zhu ◽  
Xiaojia Zheng ◽  
Fengqiang Xiong ◽  
Baokun Huang ◽  
...  

Fabrication of photoelectrodes on a large-scale, with low-cost and high efficiency is a challenge for their practical application in photoelectrochemical (PEC) water splitting. In this work, a typical plate-like WO3 photoanode was fabricated with chemical etching of the as-prepared mixed tungsten–metal oxides (W–M–O, M = Cu, Zn or Al) by a reactive magnetron co-sputtering technique, which results in a greatly enhanced PEC performance for water oxidation in comparison with that obtained from a conventional magnetron sputtering method. The current approach is applicable for the fabrication of some other semiconductor photoelectrodes and is promising for the scaling up of applications for highly efficient solar energy conversion systems.


Author(s):  
Heyan Jiang ◽  
Jie Xu ◽  
Sishi Zhang ◽  
Hongmei Cheng ◽  
Cuicui Zang ◽  
...  

High unsymmetrical chemoselective Ullmann biaryl products and satisfactory Z-type stereoselective Heck reaction products could be achieved through changing the visible light color over AuPd@N-Rich carbon nitride under mild conditions.


1998 ◽  
Vol 63 (11) ◽  
pp. 1945-1953 ◽  
Author(s):  
Jiří Hanika ◽  
Karel Sporka ◽  
Petr Macoun ◽  
Vladimír Kysilka

The activity of ruthenium, palladium, and nickel catalysts for the hydrogenation of 1,2-dihydroacenaphthylene in cyclohexane solution was studied at temperatures up to 180 °C and pressures up to 8 MPa. The GC-MS technique was used to identify most of the perhydroacenaphthylene stereoisomers, whose fractions in the product were found dependent on the nature of the active component of the catalyst. The hydrogenation was fastest on the palladium catalyst (3% Pd/C). The nickel catalyst Ni-NiO/Al2O3, which is sufficiently active also after repeated use, can be recommended for practical application. The activation energy of 1,2-dihydroacenaphthylene hydrogenation using this catalyst is 17 kJ/mol, the reaction order with respect to hydrogen is unity.


2020 ◽  
Vol 02 (03) ◽  
pp. e128-e132
Author(s):  
Shao-Zheng Guo ◽  
Zhi-Qun Yu ◽  
Wei-Ke Su

AbstractThe development of highly efficient C–C bond formation methods for the synthesis of ethyl 2-(2,4-dichloro-5-fluorobenzoyl)-3-(dimethylamino)acrylate 1 in continuous flow processes has been described, which is based on the concept of rapid and efficient activation of carboxylic acid. 2,4-Dichloro-5-fluorobenzoic acid is rapidly converted into highly reactive 2,4-dichloro-5-fluorobenzoyl chloride by treating with inexpensive and less-toxic solid bis(trichloromethyl)carbonate. And then it rapidly reacts with ethyl 3-(dimethylamino)acrylate to afford the desired 1. This process can be performed under mild conditions. Compared with the traditional tank reactor process, less raw material consumption, higher product yield, less reaction time, higher operation safety ensured by more the environmentally friendly procedure, and process continuity are achieved in the continuous-flow system.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Nicolás Carrara ◽  
Carolina Betti ◽  
Fernando Coloma-Pascual ◽  
María Cristina Almansa ◽  
Laura Gutierrez ◽  
...  

A series of low-loaded metallic-activated carbon catalysts were evaluated during the selective hydrogenation of a medium-chain alkyne under mild conditions. The catalysts and support were characterized by ICP, hydrogen chemisorption, Raman spectroscopy, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR micro-ATR), transmission electronic microscopy (TEM), and X-ray photoelectronic spectroscopy (XPS). When studying the effect of the metallic phase, the catalysts were active and selective to the alkene synthesis. NiCl/C was the most active and selective catalytic system. Besides, when the precursor salt was evaluated, PdN/C was more active and selective than PdCl/C. Meanwhile, alkyne is present in the reaction media, and geometrical and electronic effects favor alkene desorption and so avoid their overhydrogenation to the alkane. Under mild conditions, nickel catalysts are considerably more active and selective than the Lindlar catalyst.


Sign in / Sign up

Export Citation Format

Share Document