scholarly journals Halogen-bonding-promoted Photo-induced C–X Borylation of Aryl Halide using Phenol Derivatives

Author(s):  
Kazuki Matsuo ◽  
Eiji Yamaguchi ◽  
Akichika Itoh

This study investigates the photo-induced C–X borylation reaction of aryl halides by forming a halogen-bonding complex. The method employs 2-naphthol as a halogen-bonding acceptor and proceeds under mild conditions without a photoredox catalyst under 420 nm blue light irradiation. The method is highly chemoselective, broadly functional group tolerant, and provides concise access to corresponding boronate esters. Mechanistic studies reveal that forming the halogen-bonding complex between aryl halide and naphthol acts as an electron donor-acceptor complex to furnish aryl radicals through photo-induced electron transfer.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yali Zhou ◽  
Xingjun Xu ◽  
Hongwei Sun ◽  
Guanyu Tao ◽  
Xiao-Yong Chang ◽  
...  

AbstractHydrofunctionalization, the direct addition of an X–H (e.g., X=O, N) bond across an alkene, is a desirable strategy to make heterocycles that are important structural components of naturally occurring molecules. Described here is the design and discovery of “donor–acceptor”-type platinum catalysts that are highly effective in both hydroalkoxylation and hydroamination of unactivated alkenes over a broad range of substrates under mild conditions. A number of alkene substitution patterns are accommodated, including tri-substituted, 1,1-disubstituted, (E)-disubstituted, (Z)-disubstituted and even mono-substituted double bonds. Detailed mechanistic investigations suggest a plausible pathway that includes an unexpected dissociation/re-association of the electron-deficient ligand to form an alkene-bound “donor–acceptor”-type intermediate. These mechanistic studies help understand the origins of the high reactivity exhibited by the catalytic system, and provide a foundation for the rational design of chiral catalysts towards asymmetric hydrofunctionalization reactions.


2021 ◽  
Author(s):  
He Zhao ◽  
Yang Wu ◽  
Chenggang Ci ◽  
Zhenda Tan ◽  
Jian Yang ◽  
...  

Abstract Despite the important advances in azaaryl C−H activation/functionalization, reductive functionalization of ubiquitously distributed but weakly reactive azaarenes remains to date a challenge. Herein, by a strategy incorporating a tandem coupling sequence into the reduction of azaarenes, we present a dearomative annulation of azaarenes into promising fused syn-N-heterocycles by combination with a large variety of aniline derivatives and paraformaldehyde under ruthenium(II) reductive catalysis, proceeding with excellent selectivity, mild conditions, and broad substrate and functional group compatibility. Mechanistic studies reveal that the products are formed via hydride transfer-initiated β-aminomethylation and α-arylation of the pyridyl core in azaarenes, paraformaldehyde serves as both the C1-building block and reductant precursor, and the use of Mg(OMe)2 base plays a critical role in determining the reaction chemo-selectivity by lowering the hydrogen transfer rate. The present work opens a door to further develop valuable reductive functionalization of unsaturated systems by taking profit of formaldehyde-endowed two functions.


Synlett ◽  
2019 ◽  
Vol 30 (08) ◽  
pp. 932-938 ◽  
Author(s):  
Chang-Lin Duan ◽  
Xing-Yu Liu ◽  
Yun-Xuan Tan ◽  
Rui Ding ◽  
Shiping Yang ◽  
...  

Rhodium(III)-catalyzed hydroarylation of terminal alkynes has not previously been achieved because of the inevitable oligomerization and other side reactions. Here, we report a novel Cp*Rh(III)-catalyzed hydroarylation of terminal alkynes in acetic acid as solvent to facilitate the C–H bond activation and subsequent transformations. This reaction proceeds under mild conditions, providing an effective approach to the synthesis of alkenylated heterocycles in high to excellent yields (31–99%) with a broad substrate scope (37 examples) and good functional-group compatibility. In this transformation, the loading of the alkyne can be reduced to 1.2 equivalents, which indicates the significant role of HOAc in lowering the reaction temperature and suppressing the oligomerization of the terminal alkyne. Preliminary mechanistic studies are also presented.


2019 ◽  
Author(s):  
André U. Augustin ◽  
J. Luca Merz ◽  
Peter G. Jones ◽  
Grzegorz Mloston ◽  
Daniel Werz

A general approach is described for the formation of tetrahydrothiepines using donor-acceptor cyclopropanes. Thiochalcones, functioning as sulfur-containing four-atom building blocks, were reacted in a Lewis-acid-catalyzed formal (4+3)-cycloaddition reaction with donor-acceptor cyclopropanes as three-atom building blocks. Under mild conditions various tetrahydrothiepines were synthesized in good yields in a stereosepecific reaction with high functional group tolerance.


2020 ◽  
Author(s):  
Yali Zhou ◽  
Xingjun Xu ◽  
Hongwei Sun ◽  
Guanyu Tao ◽  
Xiaoyong Chang ◽  
...  

Abstract Hydrofunctionalization, the direct additon of an X–H (e.g., X = O, N) bond across an alkene, is a desirable strategy to make heterocycles that are important structural components of naturally occurring molecules. Described here is the design and discovery of “donor–acceptor”-type platinum catalysts that are highly effective in both hydroalkoxylation and hydroamination of unactivated alkenes over a broad range of substrates under mild conditions. A number of alkene substitution patterns were accommodated, including tri-substituted, 1,1-disubstituted, (E)-disubstituted, (Z)-disubstituted and even mono-substituted double bonds. Detailed mechanistic investigations suggest a plausible pathway that includes an unexpected dissociation/re-association of the electron-deficient ligand to form an alkene-bound “donor–acceptor”-type intermediate. These mechanistic studies help understand the origins of the high reactivity exhibited by the catalytic system, and provide a foundation for the rational design of chiral catalysts towards asymmetric hydrofunctionalization reactions.


Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3407-3421 ◽  
Author(s):  
Pin Gao ◽  
Yu-Rui Gu ◽  
Xin-Hua Duan

Aromatic heterocycles are an important class of compounds found in a wide range of natural products, pharmaceutically active molecules and organic materials. Recently, the direct radical functionalization of heteroaromatic C–H bonds has become an efficient and attractive method to access substituted heteroarenes. Especially, redox-neutral radical reactions have attracted much attention of chemists due to their potential advantages such as mild conditions, free of external oxidants, and good functional group tolerance. So far, a series of redox-neutral radical reactions have been developed. In this review, we mainly focus on the recent advance in direct redox-neutral radical C–H functionalization of heteroarenes. Herein, the direct C–H arylation, C–H alkylation, and C–H fluoroalkylation of heteroarenes are represented respectively, providing practical routes to C–C bond formation.1 Introduction2 C–H Arylation of Heteroarenes with Aryl Radicals3 C–H Alkylation of Heteroarenes with Alkyl Radicals4 C–H Fluoroalkylation of Heteroarenes with Fluorine-Containing Carbon Radicals5 Concluding Remarks


Author(s):  
André U. Augustin ◽  
J. Luca Merz ◽  
Peter G. Jones ◽  
Grzegorz Mloston ◽  
Daniel Werz

A general approach is described for the formation of tetrahydrothiepines using donor-acceptor cyclopropanes. Thiochalcones, functioning as sulfur-containing four-atom building blocks, were reacted in a Lewis-acid-catalyzed formal (4+3)-cycloaddition reaction with donor-acceptor cyclopropanes as three-atom building blocks. Under mild conditions various tetrahydrothiepines were synthesized in good yields in a stereosepecific reaction with high functional group tolerance.


2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


2019 ◽  
Author(s):  
Caleb Karmel ◽  
Zhewei Chen ◽  
John Hartwig

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)]<sub>2</sub> and 2,9-Me<sub>2</sub>-phenanthroline (2,9-Me<sub>2</sub>phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H<sub>2</sub> byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me<sub>2</sub>phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me<sub>2</sub>phen ligand is due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.


Sign in / Sign up

Export Citation Format

Share Document