scholarly journals Palladium-Catalyzed [3+2] Cycloaddition via Two-Fold 1,3-C(sp3)−H Activation

Author(s):  
Hojoon Park ◽  
jin-quan yu

<div>Cycloaddition reactions provide an expeditious route to construct ring systems in a highly convergent and stereoselective manner. For a typical cycloaddition reaction to occur, however, the installation of multiple reactive functional groups (π-bonds, leaving group, etc.) are required within the substrates, compromising the overall efficiency or scope of the cycloaddition reaction. Here, we report a palladium-catalyzed [3+2] reaction that utilizes C(sp<sup>3</sup>)–H activation to generate the three-carbon unit for formal cycloaddition with maleimides. We implemented a strategy where the initial C(sp<sup>3</sup>)–H activation/olefin insertion would trigger a relayed, second remote C(sp<sup>3</sup>)–H activation to complete a formal [3+2] cycloaddition. The diastereoselectivity profile of this reaction resembles that of a typical pericyclic cycloaddition reaction in that the relationships between multiple stereocenters are exquisitely controlled in a single reaction. The key to success was the use of weakly coordinating amides as the directing group, as undesired Heck or alkylation pathways were preferred with other types of directing groups. The use of the pyridine-3-sulfonic acid ligands is critical to enable C(sp<sup>3</sup>)–H activation directed by this weak coordination. The method is compatible with a wide range of amide substrates, including lactams, which lead to novel spiro-bicyclic products. The [3+2] product is also shown to undergo a reductive desymmetrization process to access chiral cyclopentane bearing multiple stereocenters with excellent enantioselectivity.</div>

2020 ◽  
Author(s):  
Hojoon Park ◽  
jin-quan yu

<div>Cycloaddition reactions provide an expeditious route to construct ring systems in a highly convergent and stereoselective manner. For a typical cycloaddition reaction to occur, however, the installation of multiple reactive functional groups (π-bonds, leaving group, etc.) are required within the substrates, compromising the overall efficiency or scope of the cycloaddition reaction. Here, we report a palladium-catalyzed [3+2] reaction that utilizes C(sp<sup>3</sup>)–H activation to generate the three-carbon unit for formal cycloaddition with maleimides. We implemented a strategy where the initial C(sp<sup>3</sup>)–H activation/olefin insertion would trigger a relayed, second remote C(sp<sup>3</sup>)–H activation to complete a formal [3+2] cycloaddition. The diastereoselectivity profile of this reaction resembles that of a typical pericyclic cycloaddition reaction in that the relationships between multiple stereocenters are exquisitely controlled in a single reaction. The key to success was the use of weakly coordinating amides as the directing group, as undesired Heck or alkylation pathways were preferred with other types of directing groups. The use of the pyridine-3-sulfonic acid ligands is critical to enable C(sp<sup>3</sup>)–H activation directed by this weak coordination. The method is compatible with a wide range of amide substrates, including lactams, which lead to novel spiro-bicyclic products. The [3+2] product is also shown to undergo a reductive desymmetrization process to access chiral cyclopentane bearing multiple stereocenters with excellent enantioselectivity.</div>


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2021 ◽  
Author(s):  
Amalia-Sofia Piticari ◽  
Daniele Antermite ◽  
Joe I. Higham ◽  
J. Harry Moore ◽  
Matthew P. Webster ◽  
...  

A selective Pd-catalyzed C(3)–H cis-functionalization of piperidine and tetrahydropyran carboxylic acids is achieved using a C(4) aminoquinoline amide auxiliary. High mono- and cis-selectivity is attained by using mesityl carboxylic acid as an additive. Conditions are developed with significantly lower reaction temperatures (≤50 °C) than other reported heterocycle C(sp3)–H functionalization reactions, which is facilitated by a DoE optimization. A one-pot C–H functionalization-epimerization procedure provides the trans-3,4-disubstituted isomers directly. Divergent aminoquinoline removal is accomplished with the installation of carboxylic acid, alcohol, amide and nitrile functional groups. Overall fragment compounds suitable for screening are generated in 3–4 steps from readily-available heterocyclic carboxylic acids.


Synlett ◽  
2018 ◽  
Vol 29 (09) ◽  
pp. 1249-1255
Author(s):  
Wen-Li Qiao ◽  
Ling-Yan Shao ◽  
Ya-Hua Hu ◽  
Li-Hao Xing ◽  
Ke-Zuan Deng ◽  
...  

A palladium-catalyzed Csp3–H bond mono-aroyloxylation of O-alkyl substituted oxime ethers has been developed by using 2,4,6-trimethoxybenzaldoxime as an exo-type directing group with exclusive site-selectivity. With the wide range of masked aliphatic alcohol substrates and aromatic acid coupling partners, the protocol allows rapid access to various 2-alkyl substituted glycol derivatives in synthetically useful to good yields. The employed directing group is readily removed, accordingly affording valuable functionalized aliphatic alcohols. When the solvent from hybrid DCE/HFIP to CH3CN, non-directed oxidative cross-coupling is observed between the electron-rich aromatic ring of substrates and aromatic acid partners.


2020 ◽  
Author(s):  
Alena Vasquez ◽  
John Gurak ◽  
Candice Joe ◽  
Emily Cherney ◽  
Keary Engle

The palladium-catalyzed, α-selective hydroarylation of acrylates and acrylamides is reported. Under optimized conditions, this method is highly tolerant of a wide range of substrates including those with base sensitive functional groups and/or multiple enolizable carbonyl groups. A detailed mechanistic study was undertaken, and the high selectivity of this transformation was shown to be enabled by the formation of an [Pd<sup>II</sup>(Ar)(H)] intermediate, which performs selective hydride insertion into the β-position of α,β-unsaturated carbonyl compounds. <br>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ye-Wei Chen ◽  
Yang Liu ◽  
Han-Yu Lu ◽  
Guo-Qiang Lin ◽  
Zhi-Tao He

AbstractTransition metal-catalyzed asymmetric allylic substitution with a suitably pre-stored leaving group in the substrate is widely used in organic synthesis. In contrast, the enantioselective allylic C(sp3)-H functionalization is more straightforward but far less explored. Here we report a catalytic protocol for the long-standing challenging enantioselective allylic C(sp3)-H functionalization. Through palladium hydride-catalyzed chain-walking and allylic substitution, allylic C-H functionalization of a wide range of acyclic nonconjugated dienes is achieved in high yields (up to 93% yield), high enantioselectivities (up to 98:2 er), and with 100% atom efficiency. Exploring the reactivity of substrates with varying pKa values uncovers a reasonable scope of nucleophiles and potential factors controlling the reaction. A set of efficient downstream transformations to enantiopure skeletons showcase the practical value of the methodology. Mechanistic experiments corroborate the PdH-catalyzed asymmetric migratory allylic substitution process.


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


Synlett ◽  
2017 ◽  
Vol 28 (20) ◽  
pp. 2833-2838 ◽  
Author(s):  
Emeline Benoit ◽  
Julien Dansereau ◽  
Alexandre Gagnon

The carbonylative cross-coupling reaction between aryl and heteroaryl iodides and tricyclopropylbismuth is reported. The reaction is catalyzed by (SIPr)Pd(allyl)Cl, a NHC-palladium(II) catalyst, operates under 1 atm of carbon monoxide and tolerates a wide range of functional groups. The use of lithium chloride was found to provide higher yields of the desired aryl cyclopropylketones. The conditions were also applied to the carbonylative cross-coupling of an iodoalkene to afford the corresponding alkenyl cyclopropylketone.


2017 ◽  
Vol 53 (37) ◽  
pp. 5151-5154 ◽  
Author(s):  
Jiangyan Jing ◽  
Xiaohong Huo ◽  
Jiefeng Shen ◽  
Jingke Fu ◽  
Qinghua Meng ◽  
...  

Allylic alcohols and allylic amines were directly utilized in a Pd-catalyzed hydrogen-bond-activated allylic amination under mild reaction conditions in the absence of any additives. The catalytic system is compatible with a variety of functional groups and can be used to prepare a wide range of linear allylic amines in good to excellent yields.


2020 ◽  
Vol 56 (81) ◽  
pp. 12198-12201
Author(s):  
Bingjian Gao ◽  
Suchen Zou ◽  
Guoqing Yang ◽  
Yongzheng Ding ◽  
Hanmin Huang

A novel palladium-catalyzed highly selective hydrocarbonylative cycloaddition reaction with two different alkenes in the presence of CO enabled by a reactive directing-group is developed, which offers efficient access to bicyclo[2,2,2]lactones.


Sign in / Sign up

Export Citation Format

Share Document