Synthesis of Multi-Substituted Bicycloalkyl Boronates: An Intramolecular Coupling Approach to Alkyl Bioisosteres

Author(s):  
Yangyang Yang ◽  
Jet Tsien ◽  
Jonathan Hughes ◽  
Byron Peters ◽  
Rohan Merchant ◽  
...  

<p>Bicyclic hydrocarbons, bicyclo[1.1.1]pentanes (BCPs) in particular, play an emerging role as saturated bioisosteres in pharmaceutical, agrochemical, and material chemistry. Taking advantage of strain release strategies, prior synthetic studies have featured the synthesis of bridgehead-substituted (C1, C3) BCPs from [1.1.1]propellane. This work describes a novel approach to accessing multi-substituted BCPs via a new type of intramolecular cyclization. In addition to the C1, C3-disubstituted BCPs, this method also enables the construction of yet underexplored tri-substituted (C1, C2 and C3) BCPs from readily accessible cyclobutanones. The broad generality of this cyclization is examined through synthesis of a variety of caged bicyclic molecules, ranging from [1.1.1] to [3.2.1] scaffolds. The modularity afforded by the pendant bridgehead Bpin resulted from the cyclization is demonstrated via several downstream functionalizations, highlighting the ability of this approach for programmed and divergent synthesis of multi-substituted bicyclic hydrocarbons.<br></p>

2021 ◽  
Author(s):  
Yangyang Yang ◽  
Jet Tsien ◽  
Jonathan Hughes ◽  
Byron Peters ◽  
Rohan Merchant ◽  
...  

<p>Bicyclic hydrocarbons, bicyclo[1.1.1]pentanes (BCPs) in particular, play an emerging role as saturated bioisosteres in pharmaceutical, agrochemical, and material chemistry. Taking advantage of strain release strategies, prior synthetic studies have featured the synthesis of bridgehead-substituted (C1, C3) BCPs from [1.1.1]propellane. This work describes a novel approach to accessing multi-substituted BCPs via a new type of intramolecular cyclization. In addition to the C1, C3-disubstituted BCPs, this method also enables the construction of yet underexplored tri-substituted (C1, C2 and C3) BCPs from readily accessible cyclobutanones. The broad generality of this cyclization is examined through synthesis of a variety of caged bicyclic molecules, ranging from [1.1.1] to [3.2.1] scaffolds. The modularity afforded by the pendant bridgehead Bpin resulted from the cyclization is demonstrated via several downstream functionalizations, highlighting the ability of this approach for programmed and divergent synthesis of multi-substituted bicyclic hydrocarbons.<br></p>


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5637
Author(s):  
Maristella Maggi ◽  
Greta Pessino ◽  
Isabella Guardamagna ◽  
Leonardo Lonati ◽  
Cristina Pulimeno ◽  
...  

E. coli L-asparaginase is an amidohydrolase (EC 3.5.1.1) which has been successfully used for the treatment of Acute Lymphoblastic Leukemia for over 50 years. Despite its efficacy, its side effects, and especially its intrinsic immunogenicity, hamper its usage in a significant subset of cases, thus limiting therapeutic options. Innovative solutions to improve on these drawbacks have been attempted, but none of them have been truly successful so far. In this work, we fully replaced the enzyme scaffold, generating an active, miniaturized form of L-asparaginase by protein engineering of a camel single domain antibody, a class of antibodies known to have a limited immunogenicity in humans. We then targeted it onto tumor cells by an antibody scFv fragment directed onto the CD19 B-cell surface receptor expressed on ALL cells. We named this new type of nanobody-based antibody-drug conjugate “Targeted Catalytic Nanobody” (T-CAN). The new molecule retains the catalytic activity and the binding capability of the original modules and successfully targets CD19 expressing cells in vitro. Thanks to its theoretically reduced immunogenic potential compared to the original molecule, the T-CAN can represent a novel approach to tackle current limitations in L-asparaginase usage.


Author(s):  
Cristina Rodriguez-Sanchez ◽  
Susana Borromeo ◽  
Juan Hernandez-Tamames

The appearance of concepts such as “Ambient Intelligent”, “Ubiquitous Computing” and “Context-Awareness” is causing the development of a new type of services called “Context-Aware Services” that in turn may affect users of mobile communications. This technology revolution is a a complex process because of the heterogeneity of contents, devices, objects, technologies, resources and users that can coexist at the same local environment. The novel approach of our work is the development of a ”Local Infrastructure” in order to provide intelligent, transparent and adaptable services to the user as well as to solve the problem of local context control. Two contributions will be presented: conceptual model for developing a local infrastructure and an architecture design to control the service offered by the local infrastructure. This infrastructure proposed consists of an intelligent device network to link the personal portable device with the contextual services. The device design is modular, flexible, scalable, adaptable and reconfigurable remotely in order to tolerate new demanding services whenever are needed. Finally, the result suggests that we will be able to develop a wide range of new and useful applications, not conceived at origin.


2018 ◽  
Vol 940 ◽  
pp. 109-113
Author(s):  
Masaki Fujikawa ◽  
Mariko Hara ◽  
Shingo Fuchi

Multi-modal artifact metrics, an anti-counterfeiting technique, was created based on the concept of multi-modal biometrics and can improve the certainty of authenticity and difficulty of counterfeiting as it gives more than one characteristic information to the artifact. In order to give two optical feature information (hue and emission intensity) into the ceramic products, we develop a new type of glass phosphor. This is a novel approach, since up-conversion phosphors with different color hue and emission intensity at each observation point on the material by optical excitation have never been reported. By welding a small amount of phosphor powder onto the surface of the ceramics, the certainty of authenticity and difficulty of counterfeiting would be enhanced than an existing method we proposed. Based on our experiment, we found appropriate blending ratio of two types of rare earth oxides for making glass phosphor with above-mentioned emission characteristics. These characteristics could be seen in other glass phosphor created by different base material glass with same blending ratio.


2001 ◽  
Vol 3 (9) ◽  
pp. 1261-1264 ◽  
Author(s):  
Peter Wipf ◽  
Joey-Lee Methot

ChemInform ◽  
2008 ◽  
Vol 39 (48) ◽  
Author(s):  
Anatoliy P. Marchenko ◽  
Georgiy K. Koydan ◽  
Radomyr V. Smaliy ◽  
Aleksandra A. Chaykovskaya ◽  
Aleksandr M. Pinchuk ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1828
Author(s):  
Min Pang ◽  
Lulu Cao ◽  
Shengmei Kang ◽  
Shaotong Jiang ◽  
Lili Cao

The flavor substances in sesame oil (SO) are volatile and unstable, which causes a decrease in the flavor characteristics and quality of SO during storage. In this study, the effect of gelation on the release of flavor substances in SO was investigated by preparing biological waxes and monoglycerides oleogels. The results showed that the release of flavor substances in SO in an open environment is in accordance with the Weibull equation kinetics. The oleogels were found to retard the release of volatiles with high saturated vapor pressures and low hydrophobic constants in SO. The release rate constant k value of 2-methylpyazine in BW oleogel is 0.0022, showing the best retention effect. In contrast, the addition of gelling agents had no significant retention effect on the release of volatiles with low saturated vapor pressures or high hydrophobic constants in SO, and even promoted the release of these compounds to some extent. This may be due to the hydrophilic structural domains formed by the self-assembly of gelling agents, which reduces the hydrophobicity of SO. This work provides a novel approach for retaining volatile compounds in flavored vegetable oils. As a new type of flavor delivery system, oleogels can realize the controlled release of volatile compounds.


2019 ◽  
Author(s):  
Fang-Cheng Yeh ◽  
Islam M. Zaydan ◽  
Valerie R. Suski ◽  
David Lacomis ◽  
R. Mark Richardson ◽  
...  

AbstractDiffusion MRI tractography has been used to map the axonal structure of human brain, but its ability to detect neuronal injury is yet to be explored. Here we report differential tractography, a new type of tractography that utilizes repeat MRI scans and a novel tracking strategy to map the exact segment of fiber pathways with a neuronal injury. We examined differential tractography on multiple sclerosis, Huntington disease, amyotrophic lateral sclerosis, and epileptic patients. The results showed that the affected pathways shown by differential tractography matched well with the unique clinical symptoms of the patients, and the false discovery rate of the findings could be estimated using a sham setting to provide a reliability measurement. This novel approach enables a quantitative and objective method to monitor neuronal injury in individuals, allowing for diagnostic and prognostic evaluation of brain diseases.


2017 ◽  
Vol 10 (7) ◽  
pp. 2715-2740 ◽  
Author(s):  
Andrés Payo ◽  
David Favis-Mortlock ◽  
Mark Dickson ◽  
Jim W. Hall ◽  
Martin D. Hurst ◽  
...  

Abstract. The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries) that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME), change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes) that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes) as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff–beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures.


Sign in / Sign up

Export Citation Format

Share Document