scholarly journals An Ideal yet Highly Accurate Model Correlating Global Average Temperature to Excess CO2-Emissions

Author(s):  
Roland Hermann Pawelke

The causality of preceding atmospheric excess-to-equilibrium CO<sub>2</sub>-amounts and trailing system temperature increase is captured in terms of the ideal gas law, equilibrium thermodynamics and transition state theory for the first time: the model’s performance is excellent, publicly available global mean temperature data from 1880 (13.58 °C / 290.7 ppm) to April 2021 (14.49 °C / 416.2 ppm) are reproduced at less than ±2 % deviation. Eight future global mean temperatures for atmospheric CO<sub>2</sub>-levels between 450 ppm and 7000 ppm are extrapolated and an empiric expression of the relation is derived. The model’s ideal nature allows adaption for other greenhouse gases and provides a reference for conclusions about the energetic weighting and the wider significance of the CO<sub>2</sub>-based proportion in the total Greenhouse effect.

2021 ◽  
Author(s):  
Roland Hermann Pawelke

The causality of preceding atmospheric excess-to-equilibrium CO<sub>2</sub>-amounts and trailing system temperature increase is captured in terms of the ideal gas law, equilibrium thermodynamics and transition state theory for the first time: the model’s performance is excellent, publicly available global mean temperature data from 1880 (13.58 °C / 290.7 ppm) to April 2021 (14.49 °C / 416.2 ppm) are reproduced at less than ±2 % deviation. Eight future global mean temperatures for atmospheric CO<sub>2</sub>-levels between 450 ppm and 7000 ppm are extrapolated and an empiric expression of the relation is derived. The model’s ideal nature allows adaption for other greenhouse gases and provides a reference for conclusions about the energetic weighting and the wider significance of the CO<sub>2</sub>-based proportion in the total Greenhouse effect.


Author(s):  
Kevin H. Hunter ◽  
Jon-Marc G. Rodriguez ◽  
Nicole M. Becker

Beyond students’ ability to manipulate variables and solve problems, chemistry instructors are also interested in students developing a deeper conceptual understanding of chemistry, that is, engaging in the process of sensemaking. The concept of sensemaking transcends problem-solving and focuses on students recognizing a gap in knowledge and working to construct an explanation that resolves this gap, leading them to “make sense” of a concept. Here, we focus on adapting and applying sensemaking as a framework to analyze three groups of students working through a collaborative gas law activity. The activity was designed around the learning cycle to aid students in constructing the ideal gas law using an interactive simulation. For this analysis, we characterized student discourse using the structural components of the sensemaking epistemic game using a deductive coding scheme. Next, we further analyzed students’ epistemic form by assessing features of the activity and student discourse related to sensemaking: whether the question was framed in a real-world context, the extent of student engagement in robust explanation building, and analysis of written scientific explanations. Our work provides further insight regarding the application and use of the sensemaking framework for analyzing students’ problem solving by providing a framework for inferring the depth with which students engage in the process of sensemaking.


2012 ◽  
Vol 90 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Xiaomin Sun ◽  
Chenxi Zhang ◽  
Yuyang Zhao ◽  
Jing Bai ◽  
Maoxia He

In the atmosphere, linalool ozonolysis will generate a series of oxidation products and then form particles through nucleation. In this study, the linalool ozonolysis mechanisms were studied and some of the main products detected from experiment are verified. The Rice–Ramsperger–Kassel–Marcus (RRKM) theory and the canonical variational transition state theory (CVT) with small curvature tunneling effect (SCT) are used to calculate rate constants over the temperature range of 200∼800 K. The total rate constant for the reaction of ozone with linalool is 4.50 × 10−16 cm3 molecule–l s–l, and the addition of ozone to (CH3)2C=CH– is the main ozone addition position. Furthermore, the Arrhenius formulas are fitted and the lifetimes of reaction species in the troposphere are discussed for the first time. The total atmospheric lifetime of linalool relative to O3 is 2.30 h. The O3-initiated atmospheric lifetimes of P1, P3, and P6 are 2.64 months, 16.67 days, and 15.5 h, respectively.


2020 ◽  
Vol 02 (01) ◽  
pp. 2020001
Author(s):  
Dulli C. Agrawal

The illustrious question by German Astrophysicist R. Emden, “Why do we have winter heating?” has been re-examined for air following both the ideal and imperfect gas laws; the internal energy of the air in the room remains unaffected in the former case whereas it increases marginally for the latter one. The findings corresponding to ideal gas law were correlated by Emden with the mass of a person which does not change even though food is constantly consumed. This example corresponds to adulthood when the mass of a person remains more or less constant. But the marginal change of internal energy in the case of van der Waals gas is consistent with three stages of a person — initially a person grows during childhood followed by adulthood when he has more or less constant weight and finally in old age, it deteriorates.


2019 ◽  
Vol 116 (18) ◽  
pp. 8728-8733 ◽  
Author(s):  
Feng Zhu ◽  
Julien Emile-Geay ◽  
Nicholas P. McKay ◽  
Gregory J. Hakim ◽  
Deborah Khider ◽  
...  

Climate records exhibit scaling behavior with large exponents, resulting in larger fluctuations at longer timescales. It is unclear whether climate models are capable of simulating these fluctuations, which draws into question their ability to simulate such variability in the coming decades and centuries. Using the latest simulations and data syntheses, we find agreement for spectra derived from observations and models on timescales ranging from interannual to multimillennial. Our results confirm the existence of a scaling break between orbital and annual peaks, occurring around millennial periodicities. That both simple and comprehensive ocean–atmosphere models can reproduce these features suggests that long-range persistence is a consequence of the oceanic integration of both gradual and abrupt climate forcings. This result implies that Holocene low-frequency variability is partly a consequence of the climate system’s integrated memory of orbital forcing. We conclude that climate models appear to contain the essential physics to correctly simulate the spectral continuum of global-mean temperature; however, regional discrepancies remain unresolved. A critical element of successfully simulating suborbital climate variability involves, we hypothesize, initial conditions of the deep ocean state that are consistent with observations of the recent past.


1940 ◽  
Vol 17 (1) ◽  
pp. 15
Author(s):  
Alexander Calandra

Author(s):  
Michael James Martin

Gas flow through arrays of rectangular nano-fins is modeled using the linearized free-molecular drag and heat transfer equations. These are combined with the one-dimensional equations for conservation of mass, momentum, and energy, and the ideal gas law, to find the governing equations for flow through the array. The results show that the pressure gradient, temperature, and local velocity of the gas are governed by coupled ordinary differential equations. The system of equations is solved for representative arrays of nano-fins to find the total heat transfer and pressure drop across a 1 cm chip.


2007 ◽  
Vol 42 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Dragia Trifonov Ivanov

2018 ◽  
Author(s):  
Roland Hermann Pawelke

This article outlines a simple theoretical formalism illuminating the boundaries to reversible solid hydrogen storage, based on the ideal gas law and classic equilibrium thermodynamics. A global picture of chemical reversible hydrogen sorption is unveiled, including a thermodynamic explanation of partial reversibility.<br>


Sign in / Sign up

Export Citation Format

Share Document