Beyond students’ ability to manipulate variables and solve problems, chemistry instructors are also interested in students developing a deeper conceptual understanding of chemistry, that is, engaging in the process of sensemaking. The concept of sensemaking transcends problem-solving and focuses on students recognizing a gap in knowledge and working to construct an explanation that resolves this gap, leading them to “make sense” of a concept. Here, we focus on adapting and applying sensemaking as a framework to analyze three groups of students working through a collaborative gas law activity. The activity was designed around the learning cycle to aid students in constructing the ideal gas law using an interactive simulation. For this analysis, we characterized student discourse using the structural components of the sensemaking epistemic game using a deductive coding scheme. Next, we further analyzed students’ epistemic form by assessing features of the activity and student discourse related to sensemaking: whether the question was framed in a real-world context, the extent of student engagement in robust explanation building, and analysis of written scientific explanations. Our work provides further insight regarding the application and use of the sensemaking framework for analyzing students’ problem solving by providing a framework for inferring the depth with which students engage in the process of sensemaking.