Stereoselective Aminoiodination of Activated Alkynes with Organoiodine(III) Reagents and Amines via Multiple-Site Functionalization: Access to Iodinated Enamines and N-Aryl Indoles

Author(s):  
sagar arepally ◽  
Narenderreddy Katta ◽  
Ajoy Chamuah ◽  
Sharada Duddu. S

<p>A stereoselective aminoiodination of activated alkynes with PhI(OAc)<sub>2</sub> and amines <i>via</i> multiple-site functionalization to afford (<i>Z</i>)diethyl 2-(diphenylamino)-3-iodomaleate derivatives with superior yields has been described. The key feature of this reaction is the incorporation of iodide and aryl group concurrently in the same molecule in a stereoselective manner by employing PhI(OAc)<sub>2</sub> as electrophilic reagent as well as iodide and aryl group source. The high stereoselectivity of the reaction can be explained based on the structure of the possible intermediates, the conformations of which controlled by the hydrogen bonding, steric hindrance and electrostatic attractions. This reaction proceeds under mild conditions, providing various dialkyl 2-(diphenylamino)-3-iodomaleates by a single operation starting from activated alkynes. The robustness of our strategy is revealed by making of bis (dialkyl 2-(diphenylamino)-3-iodomaleate) derivatives involving formation of four new C-N bonds and two C-I bonds with a single step. The synthesized inactive 3° enamines (dialkyl 2-(diphenylamino)-3-iodomaleates) could be further transformed into highly substituted indoles via Pd catalyzed C-H and C-I activation under non-acidic conditions. </p><br>

2018 ◽  
Author(s):  
sagar arepally ◽  
Ajoy Chamuah ◽  
Sharada Duddu. S

<p>A stereoselective aminoiodination of activated alkynes with PhI(OAc)<sub>2</sub> and amines <i>via</i> multiple-site functionalization to afford (<i>Z</i>)diethyl 2-(diphenylamino)-3-iodomaleate derivatives with superior yields has been described. The key feature of this reaction is the incorporation of iodide and aryl group concurrently in the same molecule in a stereoselective manner by employing PhI(OAc)<sub>2</sub> as electrophilic reagent as well as iodide and aryl group source. The high stereoselectivity of the reaction can be explained based on the structure of the possible intermediates, the conformations of which controlled by the hydrogen bonding, steric hindrance and electrostatic attractions. This reaction proceeds under mild conditions, providing various dialkyl 2-(diphenylamino)-3-iodomaleates by a single operation starting from activated alkynes. The robustness of our strategy is revealed by making of bis (dialkyl 2-(diphenylamino)-3-iodomaleate) derivatives involving formation of four new C-N bonds and two C-I bonds with a single step. The synthesized inactive 3° enamines (dialkyl 2-(diphenylamino)-3-iodomaleates) could be further transformed into highly substituted indoles via Pd catalyzed C-H and C-I activation under non-acidic conditions. </p><br>


2019 ◽  
Author(s):  
sagar arepally ◽  
Narenderreddy Katta ◽  
Ajoy Chamuah ◽  
Sharada Duddu. S

<p>A stereoselective aminoiodination of activated alkynes with PhI(OAc)<sub>2</sub> and amines <i>via</i> multiple-site functionalization to afford (<i>Z</i>)diethyl 2-(diphenylamino)-3-iodomaleate derivatives with superior yields has been described. The key feature of this reaction is the incorporation of iodide and aryl group concurrently in the same molecule in a stereoselective manner by employing PhI(OAc)<sub>2</sub> as electrophilic reagent as well as iodide and aryl group source. The high stereoselectivity of the reaction can be explained based on the structure of the possible intermediates, the conformations of which controlled by the hydrogen bonding, steric hindrance and electrostatic attractions. This reaction proceeds under mild conditions, providing various dialkyl 2-(diphenylamino)-3-iodomaleates by a single operation starting from activated alkynes. The robustness of our strategy is revealed by making of bis (dialkyl 2-(diphenylamino)-3-iodomaleate) derivatives involving formation of four new C-N bonds and two C-I bonds with a single step. The synthesized inactive 3° enamines (dialkyl 2-(diphenylamino)-3-iodomaleates) could be further transformed into highly substituted indoles via Pd catalyzed C-H and C-I activation under non-acidic conditions. </p><br>


Synlett ◽  
2019 ◽  
Vol 30 (14) ◽  
pp. 1713-1718 ◽  
Author(s):  
Ranadeep Talukdar

Bromination of phenolic compounds without directly using molecular bromine possesses much importance. In this article an IrIII/CCl3Br-assisted single-step double functionalization of hydroxy benzaldehydes is reported. It involves simultaneous esterification of the aldehyde group and bromination of the aryl ring of phenolic aldehydes in one-pot. The reaction proceeds under mild conditions in the presence of 445 nm blue LED light to obtain highly functionalized bromo hydroxy benzoates in moderate to good yields. In comparison, Selectfluor as an oxidant gives only non-bromo phenolic esters.


2017 ◽  
Vol 15 (10) ◽  
pp. 2163-2167 ◽  
Author(s):  
Zhouting Rong ◽  
Antonio M. Echavarren

The polycyclisation of polyeneynes catalyzed by gold(i) has been extended for the first time to the simultaneous formation of up to four carbon–carbon bonds, leading to steroid-like molecules with high stereoselectivity in a single step with low catalyst loadings.


2021 ◽  
Author(s):  
Travis DeLano ◽  
Sara Dibrell ◽  
Caitlin R. Lacker ◽  
Adam Pancoast ◽  
Kelsey Poremba ◽  
...  

An asymmetric reductive cross-coupling of α-chloroesters and (hetero)aryl iodides is reported. This nickel-catalyzed reaction proceeds with a chiral BiOX ligand under mild conditions, affording α-arylesters in good yields and enantioselectivities....


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10929-10934
Author(s):  
Chuangui Cao ◽  
Zhihui Zhao ◽  
Yong Qi ◽  
Hui Peng ◽  
Kuanjun Fang ◽  
...  

The solvent, DEA, reduces the dye aggregation that may be caused by the weak hydrogen bonding and relatively smaller steric hindrance effect.


Author(s):  
Tao Fan ◽  
Yan Liu ◽  
Caina Jiang ◽  
Yanli Xu ◽  
Yan-Yan Chen

A radical cascade reaction of 2-aryloxy phenylacetylene with phosphine oxides promoted by K2S2O8 was developed, provided diphosphonyl xanthenes as products. This reaction proceeds under transition metal-free and mild conditions with...


Metabolites ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 48 ◽  
Author(s):  
Hajime Sato ◽  
Masanobu Uchiyama ◽  
Kazuki Saito ◽  
Mami Yamazaki

Lys-derived alkaloids widely distributed in plant kingdom have received considerable attention and have been intensively studied; however, little is known about their biosynthetic mechanisms. In terms of the skeleton formation, for example, of quinolizidine alkaloid biosynthesis, only the very first two steps have been identified and the later steps remain unknown. In addition, there is no available information on the number of enzymes and reactions required for their skeletal construction. The involvement of the Δ 1 -piperideine dimerization has been proposed for some of the Lys-derived alkaloid biosyntheses, but no enzymes for this dimerization reaction have been reported to date; moreover, it is not clear whether this dimerization reaction proceeds spontaneously or enzymatically. In this study, the energetic viability of the Δ 1 -piperideine dimerizations under neutral and acidic conditions was assessed using the density functional theory computations. In addition, a similar type of reaction in the dipiperidine indole alkaloid, nitramidine, biosynthesis was also investigated. Our findings will be useful to narrow down the candidate genes involved in the Lys-derived alkaloid biosynthesis.


Synlett ◽  
2018 ◽  
Vol 29 (08) ◽  
pp. 1028-1032 ◽  
Author(s):  
Xing Zheng ◽  
Xingang Zhang ◽  
Yu-Yan Ren

Bromotrifluoromethane (CF3Br) is a simple, inexpensive and abundant industrial material employed as a trifluoromethylating reagent. However, only limited strategies using CF3Br as a fluorine source are reported. Herein, we describe a visible-light-induced hydrotrifluoromethylation of alkenes and alkynes with CF3Br. The reaction proceeds under mild conditions with good functional group tolerance, providing a new route for the application of BrCF3 in organic synthesis.


2020 ◽  
Author(s):  
Victor Babin ◽  
Alex Talbot ◽  
Alexandre Labiche ◽  
Gianluca Destro ◽  
Antonio Del Vecchio ◽  
...  

A novel photocatalytic approach for carbon isotope exchange is reported. Utilizing [<sup>13</sup>C]CO<sub>2</sub> as primary C1 sources, this protocol allows the insertion of the desired carbon isotope into phenyl acetic acids without the need of structural modifications or pre-functionalization, in one single step. The exceptionally mild conditions required for this traceless transformation are in stark contrast with previous methods requiring the use of harsh thermal conditions.


Sign in / Sign up

Export Citation Format

Share Document