scholarly journals Fundamentals of vaping-associated pulmonary injury leading to severe respiratory distress

2021 ◽  
Vol 5 (2) ◽  
pp. e202101246
Author(s):  
Carolina Esquer ◽  
Oscar Echeagaray ◽  
Fareheh Firouzi ◽  
Clarissa Savko ◽  
Grant Shain ◽  
...  

Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.

2021 ◽  
Author(s):  
Carolina Esquer ◽  
Oscar Echeagaray ◽  
Fareheh Firouzi ◽  
Clarissa Savko ◽  
Grant Shain ◽  
...  

AbstractVaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults there is little information on long term consequences of vaping and potential health risks. This study demonstrates Vaping-Induced Pulmonary Injury (VAPI) using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 weeks of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac contractile performance for systemic output is moderately but significantly impaired, and the shows severe pulmonary side structural remodeling with chamber enlargement. This VAPI model with pulmonary circuit failure demonstrates mechanistic underpinnings of vaping-related pathologic injury.


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 340 ◽  
Author(s):  
Zhi-Jie Tang ◽  
Xin Hu ◽  
Jun-Qin Qiao ◽  
Hong-Zhen Lian

20 sets of indoor and outdoor size-segregated aerosol (SSA) samples (180 foils) were collected synchronously by using two 8 Stage Non-Viable Cascade Impactor from an office room in the central region of the megacity-Nanjing, China in winter and spring in 2016. The mass size distribution of SSAs was bimodal for outdoor SSAs and unimodal for indoor in both winter and spring. The crustal elements, such as K, Ca, Mg and Fe, were mainly distributed in the coarse fractions of SSAs while toxic elements such as As, Cd, Pb and Sb were enriched more in the fine fractions in both winter and spring. Moreover, indoor/outdoor (I/O) concentration ratios of SSAs and inorganic elements indicated the penetration of outdoor fine fractions of SSAs into indoor air. As, Pb, V and Mn showed higher inhalation bioaccessibility extracted by the artificial lysosomal fluid (ALF); while V, As, Sr and Cd showed higher inhalation bioaccessibility using the simulated lung fluid (SLF), suggesting differences in elemental inhalation bioaccessibility between ALF and SLF extraction. There were similar potential carcinogenic and accumulative non-carcinogenic risks via inhalation exposure to indoor and outdoor particle-bound toxic elements based on their bioaccessible concentrations. Therefore, the potential health risks to human posed by toxic elements in office rooms cannot be neglected via inhalation exposure of the fine airborne particles.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 940
Author(s):  
Linda Rubinstein ◽  
Amber M. Paul ◽  
Charles Houseman ◽  
Metadel Abegaz ◽  
Steffy Tabares Ruiz ◽  
...  

Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Trishala Gopikrishna ◽  
Harini Keerthana Suresh Kumar ◽  
Kumar Perumal ◽  
Elavarashi Elangovan

Abstract Purpose Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. Methods This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. Results The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. Conclusion Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.


Toxin Reviews ◽  
2021 ◽  
pp. 1-13
Author(s):  
Masumeh Taheri ◽  
Mohamad Hosein Mahmudy Gharaie ◽  
Jalil Mehrzad ◽  
Michael Stone ◽  
Reza Afshari

Author(s):  
Nguyen Quoc Thang ◽  
Bui The Huy ◽  
Dang Nguyen Nha Khanh ◽  
Ngo Thi Tuong Vy ◽  
Tran Ha Phuong ◽  
...  

2009 ◽  
Vol 28 (6-7) ◽  
pp. 393-400 ◽  
Author(s):  
JF Nyland ◽  
EK Silbergeld

There is an urgent need to develop efficient and rapid strategies in order to characterize the potential health risks associated with nanomaterials, given the speed with which applications and uses are increasing. Use of standard toxicity methods will not be sufficient to meet this need. This article proposes the adoption of two novel guidances: the system’s biological approach to toxicity testing advocated by the US National Research Council and a nanobiological perspective that identifies key events at the nanoscale that are relevant to signal transduction and structural biology.


1987 ◽  
Vol 44 (5) ◽  
pp. 337-343 ◽  
Author(s):  
K Rodelsperger ◽  
B Bruckel ◽  
J Manke ◽  
H J Woitowitz ◽  
F Pott

Sign in / Sign up

Export Citation Format

Share Document