mineral absorption
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 61)

H-INDEX

38
(FIVE YEARS 5)

2021 ◽  
Vol 10 (1) ◽  
pp. 87
Author(s):  
Roberta Marra ◽  
Nadia Lombardi ◽  
Alessandro Piccolo ◽  
Navid Bazghaleh ◽  
Pratibha Prashar ◽  
...  

Biofortification of crops via agricultural interventions represents an excellent way to supply micronutrients in poor rural populations, who highly suffer from these deficiencies. Soil microbes can directly influence plant growth and productivity, e.g., by contrasting plant pathogens or facilitating micronutrient assimilation in harvested crop-food products. Among these microbial communities, Trichoderma fungi are well-known examples of plant symbionts widely used in agriculture as biofertilizers or biocontrol agents. In this work, eleven Trichoderma strains and/or their bioactive metabolites (BAMs) were applied to lentil plants to evaluate their effects on plant growth and mineral content in greenhouse or field experiments. Our results indicated that, depending upon the different combinations of fungal strain and/or BAM, the mode of treatment (seed and/or watering), as well as the supplementary watering with solutions of iron (Fe) and zinc (Zn), the mineral absorption was differentially affected in treated plants compared with the water controls. In greenhouse conditions, the largest increase in Fe and Zn contents occurred when the compounds were applied to the seeds and the strains (in particular, T. afroharzianum T22, T. harzianum TH1, and T. virens GV41) to the soil. In field experiments, Fe and Zn contents increased in plants treated with T. asperellum strain KV906 or the hydrophobin HYTLO1 compared with controls. Both selected fungal strains and BAMs applications improved seed germination and crop yield. This biotechnology may represent an important challenge for natural biofortification of crops, thus reducing the risk of nutrient deficiencies.


2021 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Songhee Lee ◽  
Heesang You ◽  
Yeongju Lee ◽  
Haingwoon Baik ◽  
Jeankyung Paik ◽  
...  

Human gut microbiota are involved in different metabolic processes, such as digestion and nutrient synthesis, among others. For the elderly, supplements are a major means of maintaining health and improving intestinal homeostasis. In this study, 51 elderly women were administered MPRO3 (n = 17), a placebo (n = 16), or both (MPRO3: 1 week, placebo: 3 weeks; n = 18) for 4 weeks. The fecal microbiota were analyzed by sequencing the 16S rRNA gene V3–V4 super-variable region. The dietary fiber intake increased, and glucose levels decreased with 4-week MPRO3 intake. Reflux, indigestion, and diarrhea syndromes gradually improved with MPRO3 intake, whereas constipation was maintained. The stool shape also improved. Bifidobacterium animalis, B. pseudolongum, Lactobacillus plantarum, and L. paracasei were relatively more abundant after 4 weeks of MPRO3 intake than in those subjects after a 1-week intake. Bifidobacterium and B. longum abundances increased after 1 week of MPRO3 intake but decreased when the intake was discontinued. Among different modules and pathways, all 10 modules analyzed showed a relatively high association with 4-week MPRO3 intake. The mineral absorption pathway and cortisol biosynthesis and secretion pathways correlated with the B. animalis and B. pseudolongum abundances at 4 weeks. Therefore, 4-week MPRO3 intake decreased the fasting blood glucose level and improved intestinal health and metabolism.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3310
Author(s):  
Karim M. Fawzy El-Sayed ◽  
Amira Bittner ◽  
Kristina Schlicht ◽  
Mohamed Mekhemar ◽  
Kim Enthammer ◽  
...  

The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells’ (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs’ multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs’ clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.


2021 ◽  
pp. 2883-2888
Author(s):  
A. Arne ◽  
A. Ilgaza

Background and Aim: Europe and the USA have banned antibiotics use as growth promoters. There is a need for alternative products that can ensure production and health protection. Prebiotics has been proposed as alternatives because these materials have wide-ranging physiological effects on gut function, activity of the large intestinal microflora, mineral absorption, and immunity. The aim of this study was to determine the effect of three different doses of inulin, a prebiotic, in combination with probiotic Enterococcus faecium (a new synbiotic) on postnatal rumen development by comparing rumen papilla length, width, muscle layer thickness, and content pH level. Materials and Methods: Randomly selected 23 (±5)-days-old healthy male Holstein crossbreed calves, weighing 50 kg (±5 kg), were randomly allocated to seven groups, ten in each group. The calves were kept in a pen of 5, under the same conditions and were fed twice a day, ∼3.5 liters of whole milk per feeding. Control group (C n=10) was fed with whole milk only (no additives were added). The six other groups (three prebiotics and three synbiotics) received food additives with their morning milk feeding. The source of prebiotics, Jerusalem artichoke powder concentrate (JAPC) contained 50% of inulin. JAPC in doses of 6 g, 12 g, or 24 g were added to the milk. Formed prebiotic groups were denoted as PreG6, PreG12, and PreG24. To evaluate if the addition of the probiotic E. faecium 2×109 colony forming unit g–1 to manufacturer recommended dose of 0.25 g improves inulin effect on rumen, it was added to all their JAPC doses. The new content synbiotic groups were denoted as SynG6, SynG12, and SynG24. On day 57 of the study, when all calves were approximately 12 weeks old, they were slaughtered in a certified slaughterhouse. Tissue cultures for histological analysis were obtained from Saccus dorsalis and Saccus ventralis of the rumen. Tissue culture staining for histology was carried out using hematoxylin and eosin staining method. Rumen histological samples were used to measure papilla length, width, and muscle layer thickness. Each sample was used to make five measurements on the present rumen papilla. Results: The results showed that by adding 12 g of inulin to whole milk when feeding calves improves rumen papilla development, which is seen by increased length and width of papilla, especially in the Saccus ventralis region. By combing this dose of inulin with 0.25 g of E. faecium, a significant increase of papilla is achieved. Saccus ventralis muscle layer in the rumen is thicker than it is in Saccus dorsalis regardless of addition of prebiotics or synbiotics. Conclusion: The addition of inulin to whole milk can influence the pH of the rumen by making it more alkaline. The addition of prebiotic inulin and a novel synbiotic (inulin combined with E. faecium) can accelerate postnatal rumen development and improve its functionality.


2021 ◽  
Vol 5 (2) ◽  
pp. 151-162
Author(s):  
Hermanu Triwidodo ◽  
Listihani Listihani

Endophytic bacteria have many benefits, including increasing plant growth by producing phytohormones, increasing the production of mineral absorption, nitrogen fixation, reducing damage due to weather changes and increasing plant resistance to disease. Based on the above, it is necessary to select endophytic bacteria from various plants to be used as biocontrol agents. This study aims to obtain endophytic bacterial isolates that have the potential as biocontrol agents and plant growth supporters from bamboo shoots, Gamal, Tulsi, Lotus, and Alamanda. This research method includes sampling, endophytic bacteria isolation, hypersensitive, hemolysis, phosphate solvent, chitinolytic, proteolytic, and antagonist tests. Isolation of endophytic bacteria in 5 plants using 22 plant parts had a diversity of isolates. The isolated plant parts produced 1 to 7 isolates that had different morphology. The total isolates obtained were 59 isolates. In antagonistic observations, there was one isolate of endophytic bacteria that showed a clear zone when tested together with S. rolfsii, namely the isolate with code A24 from allamanda flower. From the data obtained, it is known that the endophytic bacterial isolates had an effect on inhibiting the growth of the pathogenic fungus S. roflsii, the endophytic bacterial isolates Consortium, A21 and the endophytic bacterial isolates A22 had no incidence of disease, while the bacterial isolates T00 (Bx) with an average disease incidence of 40% and 30% disease intensity. Meanwhile isolates A23, A24 and A25 had an average disease incidence ranging from 13.3%-26.6%, while controls had the highest disease incidence, namely 53.3% and disease intensity 66.6%.


2021 ◽  
Author(s):  
S M Nazmuz Sakib

Whey is nutritious by-product of cheese industry which is dumped into fields, canals and rivers in Bangladesh. It has biological active peptides, proteins and other functional characteristics, due to which it could be used in different food products such as infant formula, beverages and sports nutrition products. Grapes and papaya are rich source of sugar, vitamins, bioactive compounds, dietary antioxidants and fructo-oligosaccharide. They improve the mineral absorption, decrease the serum cholesterol level and stimulate the intestinal microflora due to their prebiotic effects. The current study is being planned to develop low cost nutritive whey-based fruit drink in Bangladesh. Grapes and papaya will be added in the whey with different ratio for development of suitable drink. The drinks will be pasteurized or unpasteurized filled in bottles and keep in refrigerator for the period of 15 days. During storage drinks will be evaluated for physicochemical attributes (ash, pH, crude fat, crude protein, acidity, solid not fat, viscosity and total solids), Microbial (TVC and Coliform) and sensory evaluation (appearance, taste, flavor and over all acceptability) will also be came out during storage. Consequently, the obtained data will be analyzed statistically following two factors under CRD design.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhili Liu ◽  
Huihan Ma ◽  
Zelin Lai

Abstract Background Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death. Traditional Chinese medicine (TCM) has special advantages in relieving HCC, while Astragalus membranaceus is commonly used in TCM treatment. However, its underlying mechanisms for treatment of HCC are unclear. Methods Differentially expressed genes (DEGs) of Astragalus membranaceus treatment in HepG2 cells were identified, and Astragalus membranaceus-gene network was constructed. The hub genes were then obtained via protein-protein interaction (PPI) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were subsequently performed. Furthermore, prognosis genes related to HCC from The Cancer Genome Atlas Program (TCGA) was identified to explore the correlation between Astragalus membranaceus treatment and prognosis of HCC. Finally, Astragalus membranaceus-component-target network was established through SymMap. Results Twenty five DEGs (15 up-regulated and 10 down-regulated) of Astragalus membranaceus treatment in HepG2 cells were identified. Among the 25 genes, MT1F, MT1G, MT1X and HMOX1 may play essential roles. Astragalus membranaceus mainly affects the Mineral absorption pathway in HCC. A total of 256 genes (p < 0.01) related to prognosis of HCC were identified, and MT1G is a common gene between prognosis genes and DEGs. Furthermore, Astragalus membranaceus may directly down-regulate MT1G through daidzein to promote ferroptosis of HCC cells and improve prognosis for HCC. Conclusion Our study provided new understandings of the pharmacological mechanisms by which Astragalus membranaceus improves the prognosis of HCC, and showed that the combination of transcriptomics and network pharmacology is helpful to explore mechanisms of TCM and traditional medicines from other nations.


2021 ◽  
Vol 11 ◽  
Author(s):  
Liangzhe Liu ◽  
Chaoyun Chen ◽  
Xia Liu ◽  
Bingcheng Chen ◽  
Chen Ding ◽  
...  

Pelvic cancer radiotherapy may cause chronic radiation proctitis (CRP) that adversely affects patient’s quality of life, especially in patients with prolonged hematochezia. However, previous studies of radiation enteropathy mainly focused on acute irradiation hazards, and the detailed pathogenesis process and mechanism of prolonged hematochezia associated with radiation-induced toxicity remain unclear. In this study, we characterized the gut microbiota of 32 female CRP patients with or without hematochezia. Differential patterns of dysbiosis were observed. The abundance of Peptostreptococcaceae, Eubacterium, and Allisonella was significantly higher in CRP patients with hematochezia, while the compositions of the Lachnospiraceae, Megasphera, Megamonas, and Ruminococcaceae were lower in the microbiota of non-hematochezia patients. Functional prediction suggested significant difference in the expression of mineral absorption and the arachidonic acid metabolism proteins between hematochezia and non-hematochezia patients, possibly interdependent on radiation-induced inflammation. This study provides new insight into the altered composition and function of gut microbiota in patients with hematochezia, implying the potential use of probiotics and prebiotics for assessment and treatment of CRP.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 394-394
Author(s):  
Angela R Boyer ◽  
Heaven Roberts ◽  
Dennis Nuzback ◽  
Miriam Garcia

Abstract The study objective was to evaluate absorption differences between different sources of Copper (Cu), Manganese (Mn) and Zin (Zn) in broiler diets. Cobb500 chicks (n = 130, 0-d old) were housed in colony brooders and offered basal diet and water ad libitum for eight days. Following the transition phase, 96 straight-run chicks were randomly assigned to one of 48 battery cages (2 chicks/cage; 12 cages/treatment) and offered one of three soy-corn based diets for three weeks: Negative Control (NC; Basal diet at 6 mg/kg Cu, 35 mg/kg Mn, and 36 mg/kg Zn); Positive Control (PC; NC + 15 mg/kg Cu, 100 mg/kg Mn, and 100 mg/kg Zn from Sulfate sources); Treatment 1 (T1; NC + 15 mg/kg Cu, 100 mg/kg Mn, and 100 mg/kg Zn from hydroxychloride Product 1); and Treatment 2 (T2; NC + 15 mg/kg Cu, 100 mg/kg Mn, and 100 mg/kg Zn from hydroxychloride sources Product 2). Week three birds were bled and dissected to obtain liver, breast and femur samples for mineral absorption status. Data were analyzed using RV3.6.1 procedures with non-repeated measures. Plasma and breast tissue were not (P ≥ 0.05) impacted by mineral source, however numerical increases were reported in PC, T1 and T2 over NC. Liver Cu and Zn concentrations were non-significant (P ≥ 0.05) for all treatments. However liver Mn concentrations increased (P ≤ 0.05) in Pc and T1. Copper bone concentrations were not (P ≥ 0.05) affected, but an increase (P ≤ 0.05) in Mn and Zn was reported for PC, T1 and T2 versus NC. These results indicate increased absorption occurs when mineral sources are adequately supplemented beyond basal diet levels and that source may impact absorption rate. Additional research is needed to address the absorption ability of different mineral sources to better understand the impact on bird performance.


Author(s):  
Jingyi Chen ◽  
Wenjing Wu ◽  
Zhiqian Wang ◽  
Chuannan Zhai ◽  
Baocheng Deng ◽  
...  

Myopia is a major public health concern with increasing global prevalence and is the leading cause of vision loss and complications. The potential role of the cornea, a substantial component of refractive power and the protective fortress of the eye, has been underestimated in the development of myopia. Our study acquired corneal stroma tissues from myopic patients undergoing femtosecond laser-assisted small incision lenticule extraction (SMILE) surgery and investigated the differential expression of circulating proteins between subjects with low and high myopia by means of high-throughput proteomic approaches—the quantitative tandem mass tag (TMT) labeling method and parallel reaction monitoring (PRM) validation. Across all corneal stroma tissue samples, a total of 2,455 proteins were identified qualitatively and quantitatively, 103 of which were differentially expressed between those with low and high myopia. The differentially abundant proteins (DAPs) between the groups of stroma samples mostly demonstrated catalytic activity and molecular function regulator and transporter activity and participated in metabolic processes, biological regulation, response to stimulus, and so forth. Pathway enrichment showed that mineral absorption, ferroptosis, and HIF-1 signaling pathways were activated in the human myopic cornea. Furthermore, TMT analysis and PRM validation revealed that the expression of ferritin light chain (FTL, P02792) and ferritin heavy chain (FTH1, P02794) was negatively associated with myopia development, while the expression of serotransferrin (TF, P02787) was positively related to myopia status. Overall, our results indicated that subjects with low and high myopia could have different proteomic profiles or signatures in the cornea. These findings revealed disturbances in iron metabolism and corneal oxidative stress in the more myopic eyes. Iron metabolic proteins could serve as an essential modulator in the pathogenesis of myopia.


Sign in / Sign up

Export Citation Format

Share Document