scholarly journals Energy expenditure of type-specific sedentary behaviors estimated using sensewear mini armband

Kinesiology ◽  
2018 ◽  
Vol 50 (1) ◽  
pp. 52-56
Author(s):  
Jing Jin ◽  
Jie Zhuang

SenseWear Mini Armband, an accelerometer with multiple physiological sensors, could be a practical means to estimate energy expenditure (EE) of children and adolescents, but its validity reported for these age groups has not been consistent within the literature. EE of twenty-six healthy Chinese 12-year-old adolescents was measured simultaneously using both SenseWear Mini Armband (SWMA) and metabolic chamber (MC) during a 16-hour stay in a MC. SWMA systematically underestimated the adolescents’ EE during sedentary behaviors, resting metabolic rate (RMR), basal metabolic rate (BMR), and total EE, with the absolute error rate ranging from 14.85% to 28.65%. The SWMA significantly underestimated EE compared with MC in Chinese adolescents. However, the amount of error can be reduced by applying correction equation proposed in this study.

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qi Lu ◽  
Xiaomei Zhu ◽  
Lei AI ◽  
Junfei Chen ◽  
Ling Liu

Objective To investigate the accuracy of Intelligent Device for Energy Expenditure and Activity (IDEEA) in the measurement of energy consumption in the evening of adults in Nanjing. Methods  120 subjects were selected, and worn IDEEA into the metabolic chamber for 11 hours of energy consumption test.Body composition by Dual-Energy X-ray Absorptiometry. Sleep metabolic rate(SMR),Rest metabolic rate (RMR)and Basal metabolic rate(BMR)by metabolic chamber. Results  The energy consumption results were paired with sample T test. The results showed significant difference between MC and IDEEA, but the effect size was between 0.004 and 0.042. The correlation between MC and IDEEA was 0.85 to 0 .96. The absolute error rate of energy consumption measurement was from 6.16 % to 7.92 %, of which the measurement error of sleep energy consumption was 6.16 %±4.16 %, and that of Internet energy consumption was 7.92 %±5.99 %. Conclusions Energy measurement of IDEEA absolute error rate is within acceptable range, and it provides a high-precision alternative method for estimating energy consumption. The immediate and cumulative energy consumption data can be used to estimate the energy consumption for human physical activities over a period of time.


2016 ◽  
Vol 13 (s1) ◽  
pp. S48-S52 ◽  
Author(s):  
Yong Gao ◽  
Haichun Sun ◽  
Jie Zhuang ◽  
Jian Zhang ◽  
Lynda Ransdell ◽  
...  

Background:This study determined the metabolic equivalents (METs) of several activities typically performed by Chinese youth.Methods:Thirty youth (12 years) performed 7 activities that reflected their daily activities while Energy Expenditure (EE) was measured in a metabolic chamber.Results:METs were calculated as activity EE divided by participant’s measured resting metabolic rate. A MET value ranging from 0.8 to 1.2 was obtained for sleeping, watching TV, playing computer games, reading and doing homework. Performing radio gymnastics had a MET value of 2.9. Jumping rope at low effort required 3.1 METs. Except for watching TV, METs for other activities in this study were lower than Youth Compendium values.Conclusions:The results provide empirical evidence for more accurately assessing EE of activities commonly performed by Chinese youth. This is the first study to determine METs for radio gymnastics and jump rope in Chinese youth.


1997 ◽  
Vol 36 (4) ◽  
pp. 310-312 ◽  
Author(s):  
F. Thielecke ◽  
J. Möseneder ◽  
A. Kroke ◽  
K. Klipstein-Grobusch ◽  
H. Boeing ◽  
...  

Author(s):  
Jingjing Xue ◽  
Shuo Li ◽  
Rou Wen ◽  
Ping Hong

Background: The purpose of this study was to investigate the accuracy of the published prediction equations for determining level overground walking energy cost in young adults. Methods: In total, 148 healthy young adults volunteered to participate in this study. Resting metabolic rate and energy expenditure variables at speeds of 4, 5, and 6 km/h were measured by indirect calorimetry, walking energy expenditure was estimated by 3 published equations. Results: The gross and net metabolic rate per mile of level overground walking increased with increased speed (all P < .01). Females were less economical than males. The present findings revealed that the American College of Sports Medicine and Pandolf et al equations significantly underestimated the energy cost of overground walking at all speeds (all P < .01) in young adults. The percentage mean bias for American College of Sports Medicine, Pandolf et al, and Weyand et al was 12.4%, 16.8%, 1.4% (4 km/h); 21.6%, 15.8%, 7.1% (5 km/h); and 27.6%, 12%, 6.6% (6 km/h). Bland–Altman plots and prediction error analysis showed that the Weyand et al was the most accurate in 3 existing equations. Conclusions: The Weyand et al equation appears to be the most suitable for the prediction of overground walking energy expenditure in young adults.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


2000 ◽  
Vol 78 (12) ◽  
pp. 2227-2239 ◽  
Author(s):  
Brian K McNab

Data concerning the energy expenditure of nine species in the family Felidae and one species in the family Hyaenidae are presented, all of which were obtained under standard conditions. An examination of basal rates of metabolism in these felids and in two species reported in the literature indicates that basal rate is primarily correlated with body mass; of these species, nine have a high basal metabolic rate by general mammalian standards, the two exceptions being the margay and jaguarundi. The low basal metabolic rate of the margay may be related to its arboreal habit in association with small muscle mass, but the reason for the low rate in the jaguarundi is unknown. The omnivorous striped hyaena and termitivorous aardwolf have typical mammalian basal rates. Felids that weigh less than 7 kg have slightly low minimal thermal conductances relative to mammals generally; larger species have high conductances. Felids have slightly high body temperatures.


2004 ◽  
Vol 82 (12) ◽  
pp. 1075-1083 ◽  
Author(s):  
Marc Riachi ◽  
Jean Himms-Hagen ◽  
Mary-Ellen Harper

Indirect calorimetry is commonly used in research and clinical settings to assess characteristics of energy expenditure. Respiration chambers in indirect calorimetry allow measurements over long periods of time (e.g., hours to days) and thus the collection of large sets of data. Current methods of data analysis usually involve the extraction of only a selected small proportion of data, most commonly the data that reflects resting metabolic rate. Here, we describe a simple quantitative approach for the analysis of large data sets that is capable of detecting small differences in energy metabolism. We refer to it as the percent relative cumulative frequency (PRCF) approach and have applied it to the study of uncoupling protein-1 (UCP1) deficient and control mice. The approach involves sorting data in ascending order, calculating their cumulative frequency, and expressing the frequencies in the form of percentile curves. Results demonstrate the sensitivity of the PRCF approach for analyses of oxygen consumption ([Formula: see text]02) as well as respiratory exchange ratio data. Statistical comparisons of PRCF curves are based on the 50th percentile values and curve slopes (H values). The application of the PRCF approach revealed that energy expenditure in UCP1-deficient mice housed and studied at room temperature (24 °C) is on average 10% lower (p < 0.0001) than in littermate controls. The gradual acclimation of mice to 12 °C caused a near-doubling of [Formula: see text] in both UCP1-deficient and control mice. At this lower environmental temperature, there were no differences in [Formula: see text] between groups. The latter is likely due to augmented shivering thermogenesis in UCP1-deficient mice compared with controls. With the increased availability of murine models of metabolic disease, indirect calorimetry is increasingly used, and the PRCF approach provides a novel and powerful means for data analysis.Key words: thermogenesis, oxygen consumption, metabolic rate, uncoupling protein, UCP.


Sign in / Sign up

Export Citation Format

Share Document