scholarly journals The Alkaline Diet and the Warburg Effect

2021 ◽  
Vol 12 (1) ◽  
pp. 20-39
Author(s):  
Hassan Bahrami ◽  
Ted Greiner

The changing diets accompanying our modern life style have increased the content of foods that form acidic metabolic waste residues in the body. Wastes from these metabolic processes are released into the interstitial fluids and the blood, slightly changing their pH temporarily. This link may in turn have an impact on the incidence of non-communicable diseases (NCDs). According to Warburg effect theory, an acidic cellular and circulatory environment may cause various specific health problems such as hypoxia and cancer, whereas an oxygen-rich optimum-alkaline environment could retain healthy cells. However, the mechanisms by which the diet may be influential on blood pH-related parameters and on health have remained largely unknown. This paper begins with a detailed presentation of the concepts, issues and the existing evidence regarding alkaline and acid forming diets, and summarizes the three main mechanisms by which the diet influences the acid-base balance in the body. It then presents the findings of a small exploratory study in which one author (HB) followed diets traditionally thought to produce alkaline or acidic residues. After each diet period of one month (with a two-month wash out period), pH, oxygen saturation, and carbon dioxide partial pressure were measured for arterial and for venous blood.   The resulting data indicated that the diets followed changed blood pH-related parameters in the expected directions according to the acid-base theory of health. Increased intake of acid-forming foods resulted in a slightly lower pH level, but a significant reduction of oxygen saturation in the blood, whereas increased consumption of alkaline forming foods maintained the high oxygen saturation in the blood that, according to Warburg effect theory, may, if maintained, reduce the incidence of NCDs. Further cross-over research of this kind is needed, utilizing large samples and testing various dietary modifications.

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
V. A. Kashirin ◽  
O. V. Khorolets ◽  
S. I. Andreev ◽  
A. A. Mikheev

Abstract The characteristic for most solid tumors cells is the intracellular alkalinization and acidification of the extracellular milieu and this pH gradient inversion (pHe < pHi) is associated with tumor proliferation, invasion, metastasis, aggressiveness, and treatment resistance. However is there tumor pH (pHi and/or pHe) changes affect on venous blood plasma pH? Purpose of the study. The venous blood acid-base balance before and after the combined treatment, correlation of the venous blood pH indicators (pHb), relationship neoplasm and blood pH in patients with laryngeal cancer was study. Material and methods. Studies were performed in patients with laryngeal cancer categories T2–3 N0 M0 before and after the combined treatment. The patients were divided into four groups: Group 1 – 25 patients before the start of treatment; Group 2 – 21 patients (from Group 1) after completion of the combined treatment; Group 3 – 14 patients from Group 2 with positive results of treatment and Group 4 – 7 patients from Group 2 with a negative result of treatment (recurrence and/or metastasis of the neoplasm). The control group consisted of 15 practically healthy people (Group C). Examination of venous blood acid-base balance of patients, tumor pH and tumor cells pHi and pHe was carried. Results and discussion. The increase in pCO2 and HCO – concentration will result in decrease in the pH, but if these indicators have a clear correlation in the control group, then in patients groups there was a correlation for pHb & pCO2 and pO2 only. Besides, we marked increase in pCO2, HCO –, K+, while pO decreased in pHb after the combined treatment. It is necessary to point out the differences between some benchmarks and indicators of acid-base balance in the plasma of venous blood in primary patients and patients with recurrent laryngeal cancer. So, if pHb, pO2, and Cl– patients have statistically significant differences from control data, then differences with control pCO2 values are characteristic only for patients of Groups 1 and 3. On the contrary, differences in the HCO – indices are characteristic only for patients of Group 4. There are statistically significant differences from the control indicators K+, Na+, Ca2+, Glu, Lac, mOsm in patients of the first group and Cl– and Lac of patients in the third group. Among the indicators in the third and fourth groups of patients, statistically significant differences were noted in the values of pHb, HCO – and Glu.In patients of groups 1 and 4, the determination of pHt and the calculation of pHi, pHe revealed decrease in pHt and pHe with increasing pHi in patients with recurrence of the neoplasm.The final stage of the study was to determine the relationship (and not correlation) of blood pH and laryngeal tumors and the relationship was noted in the «pHb-tumor» system in primary patients, but in patients in 3 and 4 Groups, that «pHb-tumor» connection is rather contradictory. Conclusion. Acid-base balance indicators obviously cannot be considered as unconditional markers of carcinogenesis, but their monitoring and, in particular, venous blood pH, of patients after special treatment, can help determine the risk group of patients who may develop of a malignant neoplasm recurrence. Keywords: acid-base balance, laryngeal cancer, se, prognosis.


1927 ◽  
Vol 23 (12) ◽  
pp. 1216-1222
Author(s):  
V. F. Yakimov

The body has a complex regulatory mechanism to maintain its acid-base balance. The blood reaction, shifted somewhat to the alkaline side, fluctuates within very narrow limits. Even with increased production of acidic metabolic products, the deviation from the normal fluctuations of this individually constant value either does not occur at all or is very insignificant. A stronger deviation of blood Ph to one side or the other is incompatible with life.


2021 ◽  
Vol 12 (1) ◽  
pp. 20-25
Author(s):  
Paula Anderson

There are six electrolytes that are important in maintaining homeostasis within the body. They play vital roles in regulating neurological, myocardial, muscular and cellular functions and are involved in fluid and acid–base balance. Recognising and treating electrolyte derangements is an important role for veterinary nurses especially in emergency and critical care patients. This series of two articles will discuss the physiology behind each of the six major electrolytes and discuss to monitor and treat any abnormalities.


Author(s):  
J. M. Chapel ◽  
J. L. Benedito ◽  
J. Hernández ◽  
P. Famigli-Bergamini ◽  
C. Castillo

Abstract Pet rabbits have increased their popularity in a lot of countries. However, most of the laboratory profiles in rabbit medicine come from the observations made in rabbit as biomodels or meat production. So that further researches are necessary to obtain reference values for hematology and biochemical profiles in pet rabbits and the different breeds, especially, in relation to acid-base balance. The aim of this report was to offer the mean values of the main parameters connected with acid-base profile in Netherland Dwarf breed. Thirty-five healthy rabbits (15 males and 20 females) were studied. Venous blood sample from lateral saphenous vein was analyzed to measure: haematocrit, haemoglobin, blood urea nitrogen, glucose, blood pH, partial pressure of CO2 (pCO2), total CO2, ions bicarbonate, chloride, sodium, potassium, base excess and anion Gap. Results showed a shorter range that those reported by different researchers. Moreover, differences between genders were showed in pCO2, its values were higher in males. It may be associated with a greater cellular metabolism. Values obtained in this research should be taken into account by veterinary clinicians for this breed in their clinical assessments. Besides, these values provide new results in parameters with few reference values.


1982 ◽  
Vol 100 (1) ◽  
pp. 23-40 ◽  
Author(s):  
R G O'Regan ◽  
S Majcherczyk

Adjustments of respiration and circulation in response to alterations in the levels of oxygen, carbon dioxide and hydrogen ions in the body fluids are mediated by two distinct chemoreceptive elements, situated peripherally and centrally. The peripheral arterial chemoreceptors, located in the carotid and aortic bodies, are supplied with sensory fibres coursing in the sinus and aortic nerves, and also receive sympathetic and parasympathetic motor innervations. The carotid receptors, and some aortic receptors, are essential for the immediate ventilatory and arterial pressure increases during acute hypoxic hypoxaemia, and also make an important contribution to respiratory compensation for acute disturbances of acid-base balance. The vascular effects of peripheral chemoreceptor stimulation include coronary vasodilation and vasoconstriction in skeletal muscle and the splanchnic area. The bradycardia and peripheral vasoconstriction during carotid chemoreceptor stimulation can be lessened or reversed by effects arising from a concurrent hyperpnoea. Central chemoreceptive elements respond to changes in the hydrogen ion concentration in the interstitial fluid in the brain, and are chiefly responsible for ventilatory and circulatory adjustments during hypercapnia and chronic disturbances of acid-base balance. The proposal that the neurones responsible for central chemoreception are located superficially in the ventrolateral portion of the medulla oblongata is not universally accepted, mainly because of a lack of convincing morphological and electrophysiological evidence. Central chemosensitive structures can modify peripheral chemoreceptor responses by altering discharges in parasympathetic and sympathetic nerves supplying these receptors, and such modifications could be a factor contributing to ventilatory unresponsiveness in mild hypoxia. Conversely, peripheral chemoreceptor drive can modulate central chemosensitivity during hypercapnia.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 126-129 ◽  
Author(s):  
Mariano Feriani ◽  
Claudio Ronco ◽  
Giuseppe La Greca

Our objective is to investigate transperitoneal buffer fluxes with solution containing lactate and bicarbonate, and to compare the final effect on body base balance of the two solutions. One hundred and four exchanges, using different dwell times, were performed in 52 stable continuous ambulatory peritoneal dialysis (CAPD) patients. Dialysate effluent lactate and bicarbonate and volumes were measured. Net dialytic base gain was calculated. Patients’ acid-base status and plasma lactate were determined. In lactate-buffered CAPD solution, lactate concentration in dialysate effluent inversely correlated with length of dwell time, but did not correlate with plasma lactate concentration and net ultrafiltration. Bicarbonate concentration in dialysate effluent correlated with plasma bicarbonate and dwell time but not with ultrafiltration. The arithmetic sum of the lactate gain and bicarbonate loss yielded the net dialytic base gain. Ultrafiltration was the most important factor affecting net dialytic base gain. A previous study demonstrated that in patients using a bicarbonate-buffered solution the net bicarbonate gain is a function of dwell time, ultrafiltration, and plasma bicarbonate. By combining the predicted data of the dialytic base gain with the calculated metabolic acid production, an approximate body base balance could be obtained with both lactate and bicarbonate-buffered CAPD solutions. The body base balance in CAPD patients is self-regulated by the feedback between plasma bicarbonate concentration and dialytic base gain. The level of plasma bicarbonate is determined by the dialytic base gain and the metabolic acid production. This can explain the large interpatient variability in acid-base correction. Bicarbonate-buffered CAPD solution is equal to lactate solution in correcting acid-base disorders of CAPD patients.


2016 ◽  
Vol 46 (8) ◽  
pp. 1479-1485 ◽  
Author(s):  
Priscilla Fajardo Valente Pereira ◽  
José Antonio Bessegatto ◽  
Gabriela de Castro Bregadioli ◽  
Stéfany Lia Oliveira Camilo ◽  
Nathali Adrielli Agassi de Sales ◽  
...  

ABSTRACT: The effects of a new intravenous electrolyte solution for veterinary therapy on electrolyte and acid-base balances of horses were evaluated, assessing the potential of the use of this solution as a rational alternative in fluid therapy. Eight healthy adult horses, including 4 males and 4 females, received two treatments in a cross-over design: isotonic saline solution (IS) and a test solution (TS) containing 145mEq of Na+, 5mEq of K+, 4mEq of Ca++, 2mEq of Mg++, 96mEq of Cl-, 60mEq of lactate, 50g of dextrose, and 4mg of cyanocobalamin per liter. Solutions were IV infused in a volume corresponding to 5% of BW, over 3 hours. Venous blood samples were taken 5 times before and after the infusion (at 0, 3, 6, 9 e 24h), for pHv, pCO2v, HCO3 -v, BEv, Na+, K+, Cl-, Ca++, Ca, P, Mg, glucose and L-lactate measurements, and AG and SID calculations. The data were analyzed through repeated measures ANOVA. The IS caused mild acidifying effect by increasing Cl- and decreasing plasma SID. In contrast, the TS induced mild and transient hypochloremia without changes in acid-base balance. Hyperglycemia was present at the end of the TS infusion and reversed 6 hours later. The horses did not exhibit any clinical changes. We concluded that TS is an option for fluid therapy in horses.


2007 ◽  
Vol 292 (3) ◽  
pp. G899-G904 ◽  
Author(s):  
Markus Sjöblom ◽  
Olof Nylander

When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE2-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. Mean arterial blood pressure (MAP), arterial acid-base balance, and duodenal mucosal bicarbonate secretion (DMBS) were studied. Two intra-arterial fluid support strategies were used: a standard Ringer solution and an isotonic Na2CO3 solution. Duodenal single perfusion was used, and DMBS was assessed by back titration of the effluent. PGE2 was used to stimulate DMBS. In Ringer solution-infused mice, isoflurane-induced acidosis became worse with time. The blood pH was 7.15–7.21 and the base excess was about −8 mM at the end of experiments. The continuous infusion of Na2CO3 solution completely compensated for the acidosis. The blood pH was 7.36–7.37 and base excess was about 1 mM at the end of the experiment. Basal and PGE2-stimulated DMBS were markedly greater in animals treated with Na2CO3 solution than in those treated with Ringer solution. MAP was slightly higher after Na2CO3 solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE2-stimulated DMBS as well as the responsiveness to PGE2, effects prevented by a continuous infusion of Na2CO3. When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na2CO3 infusion to maintain a normal acid-base balance.


Sign in / Sign up

Export Citation Format

Share Document