scholarly journals Numerical solution of time fractional non-linear neutral delay differential equations of fourth-order

2019 ◽  
Vol 7 (3) ◽  
pp. 579-589 ◽  
Author(s):  
Sarita Nandal ◽  
Dwijendra N Pandey
2021 ◽  
Vol 5 (4) ◽  
pp. 155
Author(s):  
Alanoud Almutairi ◽  
Omar Bazighifan ◽  
Barakah Almarri ◽  
M. A. Aiyashi ◽  
Kamsing Nonlaopon

In this paper, we study the oscillation of solutions of fourth-order neutral delay differential equations in non-canonical form. By using Riccati transformation, we establish some new oscillation conditions. We provide some examples to examine the applicability of our results.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1277
Author(s):  
Saeed Althubiti ◽  
Omar Bazighifan ◽  
Hammad Alotaibi ◽  
Jan Awrejcewicz

New oscillatory properties for the oscillation of solutions to a class of fourth-order delay differential equations with several deviating arguments are established, which extend and generalize related results in previous studies. Some oscillation results are established by using the Riccati technique under the case of canonical coefficients. The symmetry plays an important and fundamental role in the study of the oscillation of solutions of the equations. Examples are given to prove the significance of the new theorems.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1114
Author(s):  
Higinio Ramos ◽  
Osama Moaaz ◽  
Ali Muhib ◽  
Jan Awrejcewicz

In this work, we address an interesting problem in studying the oscillatory behavior of solutions of fourth-order neutral delay differential equations with a non-canonical operator. We obtained new criteria that improve upon previous results in the literature, concerning more than one aspect. Some examples are presented to illustrate the importance of the new results.


2020 ◽  
Vol 10 (14) ◽  
pp. 4855 ◽  
Author(s):  
Osama Moaaz ◽  
Ioannis Dassios ◽  
Waad Muhsin ◽  
Ali Muhib

In this article, we study a class of non-linear neutral delay differential equations of third order. We first prove criteria for non-existence of non-Kneser solutions, and criteria for non-existence of Kneser solutions. We then use these results to provide criteria for the under study differential equations to ensure that all its solutions are oscillatory. An example is given that illustrates our theory.


Sign in / Sign up

Export Citation Format

Share Document