scholarly journals Sequence Stratigraphy, Chronostratigraphy  and Zircon Geochronology of the CIROS-1  Drill Core, Ross Sea, Antarctica:  Implications for Cenozoic Glacial and  Tectonic Evolution

2021 ◽  
Author(s):  
◽  
Evelien Van de Ven

<p>Antarctica plays a central role in the global climate system. Understanding the continent's past climate interactions is key to predicting its future response to, and influence on, global climate change. In recent decades, sediment cores drilled on the Antarctic continental margin have provided direct evidence of past climatic and tectonic events. Drilled in 1986 from sea ice in western McMurdo Sound, the pioneering 702 m-long CIROS-1 core extended back to the Late Eocene and provided some of the first evidence of the antiquity and history of the Antarctic ice sheets. The CIROS-1 drill core recovered a depositional history of the western margin of the Victoria Land Basin adjacent to the Trans-Antarctic Mountains. It was located directly offshore from where the Ferrar Glacier, which drains the East Antarctic Ice Sheet, discharges into the Ross Sea. Consequently CIROS-1 contains a record of both the glacial and tectonic Cenozoic evolution of the Antarctic margin. This thesis provides a timely re-evaluation of the CIROS-1 core with new analysis techniques that enable further insights into the glacial and tectonic history of the western Ross Sea region, and includes three key objectives:  (1) Re-examine CIROS-1 sedimentology and stratigraphy and provide a new facies and sequence stratigraphic analysis using modern methods developed from recent drilling projects (e.g. CRP, ANDRILL).  (2) Develop a new integrated chronostratigraphic model through an assessment and compilation of previous studies, which provides a context for the interpretation of detrital zircon data, climate and tectonic history. (3) Undertake a detailed examination of the provenance of CIROS-1 sediments using cutting edge in situ analysis techniques of detrital zircons (U-Pb and trace element analysis using LA-ICP-MS).  Glaciomarine sequence stratigraphic analysis identifies 14 unconformity-bound sequences occurring in two distinctive stratigraphic motifs. The four sequences located beneath the 342 mbsf unconformity contain relatively complete vertical facies succession. They were deposited in shallow marine, fluvio-deltaic conditions with distal glaciers terminating on land, and possibly calving into the ocean in adjacent valleys as evidenced by occasional ice-rafted debris. The ten sequences located above ~342 mbsf have a fundamentally different architecture. They are incomplete (top-truncated), contain subglacial and ice proximal facies grading upsequence into distal glaciomarine and shelf conditions. Top truncation of these sequences represents overriding of the CIROS-1 site by the paleo-Ferrar Glacier during glacial phases.  A revised age model for CIROS-1 is presented that utilises new calibrations for Antarctic diatom zones and compiles three previously published age models for different sections of the core (Roberts et al., 2003; Wilson et al., 1998; Hannah et al., 1997). The new age model allows correlation of Late Oligocene cycles with coeval cycles in CRP-2/2A, 80 km to the north. A fundamental orbital control on the dynamics of these East Antarctic Ice Sheet outlet glaciers is evident from this comparison. Both glacier systems respond in-phase to longer-period orbital components (e.g. eccentricity 100 kyr and 400 kyr), but differ in their sensitivity to precession (20 kyr). It appears that during the Late Oligocene the Ferrar catchment responded to 20 kyr precession cycles, whilst the larger MacKay Glacier, which is more directly connected to the East Antarctic Ice Sheet, responded to longer duration 125 kyr (eccentricity) forcing.  CIROS-1 zircons group into four distinct geochemical suites. Zircons formed in felsic igneous environments dominate the CIROS-1 population, with 89 % of zircons analysed showing geochemical characteristics inherent to granitic/rhyolitic zircons. Approximately 7 % of CIROS-1 zircons have a highly trace element enriched igneous provenance and were most probably sourced from enriched enclaves in granitic/rhyolitic units or from pegmatites. Approximately 3 % of CIROS-1 zircons show a metamorphic geochemical signature, and ~1 % formed in trace element depleted igneous environments. The zircons were sourced from the local basement (Koettlitz, Granite Harbour Groups), the Beacon Supergroup, and potentially, lithologies of the East Antarctic Craton located under the ice, or components of the Trans-Antarctic Mountains located under the current baseline of geologic exposure.  Large-scale, systematic temporal trends in zircon characteristics have been divided into three distinct climatic periods: Zone 1 (702-366 mbsf, Late Eocene), Zone 2 (366-250 mbsf, Late Oligocene) and Zone 3 (< 250 mbsf, Late Oligocene and Early Miocene). Zircons deposited during these periods show unique properties. During Zone 1, Antarctica experienced a relatively warm temperate climate and alpine style glaciers flowed eastwards through the Trans-Antarctic Mountains. Zircons in this zone contain a subtle record of unroofing of geochemically zoned Granite Harbour and Koettlitz units located in the Ferrar Valley. During Zone 2 deposition, glaciers flowed though the Trans-Antarctic Mountains draining a large and ephemeral EAIS, which oscillated on orbital time scales. Zircons in this interval show variable properties, high numbers and were most probably deposited as the paleo-Ferrar Glacier deeply incised the Ferrar Fiord. In contrast, Zone 3 is characterised by a flux of McMurdo Volcanic Complex derived sediments, together with systematic changes in zircon characteristics. These patterns indicate a Late Oligocene shift in ice flow to the site (above ~250 mbsf). Due to a cooling that culminated in the Mi-1 glaciation, ice flow to the site changed from an eastward to a northward flow, in response to an increased ice volume in the Ross embayment.</p>

2021 ◽  
Author(s):  
◽  
Evelien Van de Ven

<p>Antarctica plays a central role in the global climate system. Understanding the continent's past climate interactions is key to predicting its future response to, and influence on, global climate change. In recent decades, sediment cores drilled on the Antarctic continental margin have provided direct evidence of past climatic and tectonic events. Drilled in 1986 from sea ice in western McMurdo Sound, the pioneering 702 m-long CIROS-1 core extended back to the Late Eocene and provided some of the first evidence of the antiquity and history of the Antarctic ice sheets. The CIROS-1 drill core recovered a depositional history of the western margin of the Victoria Land Basin adjacent to the Trans-Antarctic Mountains. It was located directly offshore from where the Ferrar Glacier, which drains the East Antarctic Ice Sheet, discharges into the Ross Sea. Consequently CIROS-1 contains a record of both the glacial and tectonic Cenozoic evolution of the Antarctic margin. This thesis provides a timely re-evaluation of the CIROS-1 core with new analysis techniques that enable further insights into the glacial and tectonic history of the western Ross Sea region, and includes three key objectives:  (1) Re-examine CIROS-1 sedimentology and stratigraphy and provide a new facies and sequence stratigraphic analysis using modern methods developed from recent drilling projects (e.g. CRP, ANDRILL).  (2) Develop a new integrated chronostratigraphic model through an assessment and compilation of previous studies, which provides a context for the interpretation of detrital zircon data, climate and tectonic history. (3) Undertake a detailed examination of the provenance of CIROS-1 sediments using cutting edge in situ analysis techniques of detrital zircons (U-Pb and trace element analysis using LA-ICP-MS).  Glaciomarine sequence stratigraphic analysis identifies 14 unconformity-bound sequences occurring in two distinctive stratigraphic motifs. The four sequences located beneath the 342 mbsf unconformity contain relatively complete vertical facies succession. They were deposited in shallow marine, fluvio-deltaic conditions with distal glaciers terminating on land, and possibly calving into the ocean in adjacent valleys as evidenced by occasional ice-rafted debris. The ten sequences located above ~342 mbsf have a fundamentally different architecture. They are incomplete (top-truncated), contain subglacial and ice proximal facies grading upsequence into distal glaciomarine and shelf conditions. Top truncation of these sequences represents overriding of the CIROS-1 site by the paleo-Ferrar Glacier during glacial phases.  A revised age model for CIROS-1 is presented that utilises new calibrations for Antarctic diatom zones and compiles three previously published age models for different sections of the core (Roberts et al., 2003; Wilson et al., 1998; Hannah et al., 1997). The new age model allows correlation of Late Oligocene cycles with coeval cycles in CRP-2/2A, 80 km to the north. A fundamental orbital control on the dynamics of these East Antarctic Ice Sheet outlet glaciers is evident from this comparison. Both glacier systems respond in-phase to longer-period orbital components (e.g. eccentricity 100 kyr and 400 kyr), but differ in their sensitivity to precession (20 kyr). It appears that during the Late Oligocene the Ferrar catchment responded to 20 kyr precession cycles, whilst the larger MacKay Glacier, which is more directly connected to the East Antarctic Ice Sheet, responded to longer duration 125 kyr (eccentricity) forcing.  CIROS-1 zircons group into four distinct geochemical suites. Zircons formed in felsic igneous environments dominate the CIROS-1 population, with 89 % of zircons analysed showing geochemical characteristics inherent to granitic/rhyolitic zircons. Approximately 7 % of CIROS-1 zircons have a highly trace element enriched igneous provenance and were most probably sourced from enriched enclaves in granitic/rhyolitic units or from pegmatites. Approximately 3 % of CIROS-1 zircons show a metamorphic geochemical signature, and ~1 % formed in trace element depleted igneous environments. The zircons were sourced from the local basement (Koettlitz, Granite Harbour Groups), the Beacon Supergroup, and potentially, lithologies of the East Antarctic Craton located under the ice, or components of the Trans-Antarctic Mountains located under the current baseline of geologic exposure.  Large-scale, systematic temporal trends in zircon characteristics have been divided into three distinct climatic periods: Zone 1 (702-366 mbsf, Late Eocene), Zone 2 (366-250 mbsf, Late Oligocene) and Zone 3 (< 250 mbsf, Late Oligocene and Early Miocene). Zircons deposited during these periods show unique properties. During Zone 1, Antarctica experienced a relatively warm temperate climate and alpine style glaciers flowed eastwards through the Trans-Antarctic Mountains. Zircons in this zone contain a subtle record of unroofing of geochemically zoned Granite Harbour and Koettlitz units located in the Ferrar Valley. During Zone 2 deposition, glaciers flowed though the Trans-Antarctic Mountains draining a large and ephemeral EAIS, which oscillated on orbital time scales. Zircons in this interval show variable properties, high numbers and were most probably deposited as the paleo-Ferrar Glacier deeply incised the Ferrar Fiord. In contrast, Zone 3 is characterised by a flux of McMurdo Volcanic Complex derived sediments, together with systematic changes in zircon characteristics. These patterns indicate a Late Oligocene shift in ice flow to the site (above ~250 mbsf). Due to a cooling that culminated in the Mi-1 glaciation, ice flow to the site changed from an eastward to a northward flow, in response to an increased ice volume in the Ross embayment.</p>


Polar Record ◽  
1981 ◽  
Vol 20 (129) ◽  
pp. 543-548 ◽  
Author(s):  
P. J. Barrett ◽  
B. C. McKelvey

Two of the outstanding problems in Antarctic earth sciences are the early history of the East Antarctic ice sheet, and the history of the Transantarctic Mountains. These two problems may well be linked, for if the initial uplift of the Transantarctic Mountains was sufficient to promote a permanent ice cap, this may have triggered formation of the East Antarctic ice sheet in the manner oudined by Drewry (1975, p 266). Glomar Challenger in 1973 made the first major breakthrough concerning early history of the ice sheet by recovering cores from the centre of the Ross Sea; they show that ice rafting began there 25 Ma BP and has been going on ever since (Hayes and others, 1975). However, the core data give little indication of the extent of ice cover, or of the climatic changes that led to expanded ice cover which produced the ice-rafted debris.


1994 ◽  
Vol 20 ◽  
pp. 336-340 ◽  
Author(s):  
Philippe Huybrechts

A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.


1994 ◽  
Vol 20 ◽  
pp. 336-340 ◽  
Author(s):  
Philippe Huybrechts

A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.


2021 ◽  
Author(s):  
◽  
James Stutz II

<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica are of paramount concern to human populations in low-lying communities around the world. Ocean freshening from future ice discharge events also has the potential to destabilise global climate patterns. Over 40 years of satellite observations have tracked changes in ice mass, extent and thickness in Antarctica. However, ice sheets respond on timescales that range from annual to millennial, and a geologic perspective is needed to fully understand ice sheet response on timescales longer than a few decades. This research seeks to provide an improved understanding of Antarcticas future by constraining its past. I focus on one of the largest outlet glaciers in Antarctica, the David Glacier/Drygalski Ice Tongue system which drains the East Antarctic Ice Sheet, dissects the Transantarctic Mountains and discharges into the Ross Sea. I seek to answer two questions; (1) what is the timing and nature of David Glacier thinning since the Last Glacial Maximum approximately 20,000 years ago, and (2) what physical processes were responsible for the observed thinning? I answer these questions by mapping the terrestrial and marine geomorphology along the former margins and seaward extension of David Glacier, and by using surface exposure dating of bedrock and glacial erratics to constrain the timing of glacier thinning. I then use a numerical flowline model to identify the processes that drove glacier thinning and retreat. Surface exposure ages from bedrock and glacial erratics at field sites both upstream and downstream of the modern grounding line reveal that David Glacier thinned for two millennia during the mid-Holocene. Near the coast, this thinning occurred at ∼6.5 kya at a rapid rate of up to 2 m/yr. Upstream from the grounding line, the thinning was more gradual but occurred simultaneously with thinning downstream. The timing of glacial thinning at David Glacier correlates with thinning events at other glaciers in the region and is consistent with offshore marine geological records. To identify the mechanisms responsible for the observed thinning of David Glacier, I conduct numerical model sensitivity experiments along a 1,600 km flowline, extending from the ice sheet interior to the continental shelf edge in the western Ross Sea. Offshore, the glacier flowline follows the Drygalski Trough, where it crosses numerous grounding zone wedges of various sizes. The flowline and prescribed ice shelf width is guided by the orientation and distribution of mega-scale glacial lineations as well as overall sea floor bathymetry. I explore the response of a stable, expanded David Glacier to the effects of increasing sub-ice shelf melt rates, and decreasing lateral buttressing which may have occurred as grounded ice in the Ross Sea migrated southward of the David Glacier. These forcings were also combined to explore potential feedbacks associated with Marine Ice Sheet Instability. This modelling demonstrates that David Glacier likely underwent rapid thinning over a period of ∼500 years as the grounding line retreated to a prominent sill at the mouth of David Fjord. After a period of ∼ 5 ka of stability, a second period of grounding line retreat in the model leads to the glacier reaching its modern configuration. This simulated two-phase grounding line retreat compares well with onshore geologically constrained thinning events at two sites (Mt. Kring and Hughes Bluff), both in terms of timing and rates of past glacier thinning. This retreat pattern can be forced by either increased ice shelf melting or reduced buttressing, but when combined, lower melt rates and less lateral buttressing is required to match onshore geologic constraints. Together, the findings in this thesis provide new data to constrain the past behaviour of a significant portion of the East Antarctic Ice Sheet and critical insights into the mechanisms that control ice sheet thinning and retreat. Incorporation of these constraints and improved understanding of the underlying mechanisms driving glacier thinning and grounding line retreat will ultimately improve continental scale ice sheet models which are used to project the future behaviour of the Antarctic Ice Sheet and its influence on global sea level.</p>


2021 ◽  
Author(s):  
◽  
James Stutz II

<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica are of paramount concern to human populations in low-lying communities around the world. Ocean freshening from future ice discharge events also has the potential to destabilise global climate patterns. Over 40 years of satellite observations have tracked changes in ice mass, extent and thickness in Antarctica. However, ice sheets respond on timescales that range from annual to millennial, and a geologic perspective is needed to fully understand ice sheet response on timescales longer than a few decades. This research seeks to provide an improved understanding of Antarcticas future by constraining its past. I focus on one of the largest outlet glaciers in Antarctica, the David Glacier/Drygalski Ice Tongue system which drains the East Antarctic Ice Sheet, dissects the Transantarctic Mountains and discharges into the Ross Sea. I seek to answer two questions; (1) what is the timing and nature of David Glacier thinning since the Last Glacial Maximum approximately 20,000 years ago, and (2) what physical processes were responsible for the observed thinning? I answer these questions by mapping the terrestrial and marine geomorphology along the former margins and seaward extension of David Glacier, and by using surface exposure dating of bedrock and glacial erratics to constrain the timing of glacier thinning. I then use a numerical flowline model to identify the processes that drove glacier thinning and retreat. Surface exposure ages from bedrock and glacial erratics at field sites both upstream and downstream of the modern grounding line reveal that David Glacier thinned for two millennia during the mid-Holocene. Near the coast, this thinning occurred at ∼6.5 kya at a rapid rate of up to 2 m/yr. Upstream from the grounding line, the thinning was more gradual but occurred simultaneously with thinning downstream. The timing of glacial thinning at David Glacier correlates with thinning events at other glaciers in the region and is consistent with offshore marine geological records. To identify the mechanisms responsible for the observed thinning of David Glacier, I conduct numerical model sensitivity experiments along a 1,600 km flowline, extending from the ice sheet interior to the continental shelf edge in the western Ross Sea. Offshore, the glacier flowline follows the Drygalski Trough, where it crosses numerous grounding zone wedges of various sizes. The flowline and prescribed ice shelf width is guided by the orientation and distribution of mega-scale glacial lineations as well as overall sea floor bathymetry. I explore the response of a stable, expanded David Glacier to the effects of increasing sub-ice shelf melt rates, and decreasing lateral buttressing which may have occurred as grounded ice in the Ross Sea migrated southward of the David Glacier. These forcings were also combined to explore potential feedbacks associated with Marine Ice Sheet Instability. This modelling demonstrates that David Glacier likely underwent rapid thinning over a period of ∼500 years as the grounding line retreated to a prominent sill at the mouth of David Fjord. After a period of ∼ 5 ka of stability, a second period of grounding line retreat in the model leads to the glacier reaching its modern configuration. This simulated two-phase grounding line retreat compares well with onshore geologically constrained thinning events at two sites (Mt. Kring and Hughes Bluff), both in terms of timing and rates of past glacier thinning. This retreat pattern can be forced by either increased ice shelf melting or reduced buttressing, but when combined, lower melt rates and less lateral buttressing is required to match onshore geologic constraints. Together, the findings in this thesis provide new data to constrain the past behaviour of a significant portion of the East Antarctic Ice Sheet and critical insights into the mechanisms that control ice sheet thinning and retreat. Incorporation of these constraints and improved understanding of the underlying mechanisms driving glacier thinning and grounding line retreat will ultimately improve continental scale ice sheet models which are used to project the future behaviour of the Antarctic Ice Sheet and its influence on global sea level.</p>


Author(s):  
Steven Franke ◽  
Hannes Eisermann ◽  
Wilfried Jokat ◽  
Graeme Eagles ◽  
Jölund Asseng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document