scholarly journals Generalizing the Algebra of Throws to Rank-3 Matroids

2021 ◽  
Author(s):  
◽  
Jasmine Hall

<p>The algebra of throws is a geometric construction which reveals the underlying algebraic operations of addition and multiplication in a projective plane. In Desarguesian projective planes, the algebra of throws is a well-defined, commutative and associative binary operation. However, when we consider an analogous operation in a more general point-line configuration that comes from rank-3 matroids, none of these properties are guaranteed. We construct lists of forbidden configurations which give polynomial time checks for certain properties. Using these forbidden configurations, we can check whether a configuration has a group structure under this analogous operation. We look at the properties of configurations with such a group structure, and discuss their connection to the jointless Dowling geometries.</p>

2021 ◽  
Author(s):  
◽  
Jasmine Hall

<p>The algebra of throws is a geometric construction which reveals the underlying algebraic operations of addition and multiplication in a projective plane. In Desarguesian projective planes, the algebra of throws is a well-defined, commutative and associative binary operation. However, when we consider an analogous operation in a more general point-line configuration that comes from rank-3 matroids, none of these properties are guaranteed. We construct lists of forbidden configurations which give polynomial time checks for certain properties. Using these forbidden configurations, we can check whether a configuration has a group structure under this analogous operation. We look at the properties of configurations with such a group structure, and discuss their connection to the jointless Dowling geometries.</p>


1957 ◽  
Vol 9 ◽  
pp. 378-388 ◽  
Author(s):  
D. R. Hughes

In (7), Veblen and Wedclerburn gave an example of a non-Desarguesian projective plane of order 9; we shall show that this plane is self-dual and can be characterized by a collineation group of order 78, somewhat like the planes associated with difference sets. Furthermore, the technique used in (7) will be generalized and we will construct a new non-Desarguesian plane of order p2n for every positive integer n and every odd prime p.


1964 ◽  
Vol 7 (4) ◽  
pp. 549-559 ◽  
Author(s):  
T. G. Ostrom ◽  
F. A. Sherk

A well-known theorem, due to R. H. Bruck ([4], p. 398), is the following:If a finite projective plane of order n has a projective subplane of order m < n, then either n = m2 or n > m 2+ m.In this paper we prove an analagous theorem concerning affine subplanes of finite projective planes (Theorem 1). We then construct a number of examples; in particular we find all the finite Desarguesian projective planes containing affine subplanes of order 3 (Theorem 2).


1965 ◽  
Vol 17 ◽  
pp. 331-334
Author(s):  
W. Jónsson

In (1) Baer introduced the concept of (C, γ)-transitivity and (C, γ)- homogeneity. A projective plane (see (5) for the requisite definitions and axioms) is (C, γ)-transitive if, given an ordered pair (P1, P2) of points collinear with C but distinct from C and not on γ, there is a collineation which maps P1 into P2 and leaves fixed every point on γ as well as every line through C. A projective plane is (C, γ)-homogeneous for a non-incident point-line-pair if it is (C, γ) transitive and there is a correlation which maps every line through C into its intersection with γ and every point on γ into its join with C.


1981 ◽  
Vol 4 (2) ◽  
pp. 305-319
Author(s):  
O. Bachmann

Let a finite projective plane be called rankmplane if it admits a collineation groupGof rankm, let it be called strong rankmplane if moreoverGP=G1for some point-line pair(P,1). It is well known that every rank 2 plane is desarguesian (Theorem of Ostrom and Wagner). It is conjectured that the only rank 3 plane is the plane of order 2. By [1] and [7] the only strong rank 3 plane is the plane of order 2. In this paper it is proved that no strong rank 4 plane exists.


2003 ◽  
Vol 74 (2) ◽  
pp. 145-154 ◽  
Author(s):  
M. Gabriela Araujo Pardo

AbstractWe distribute the points and lines ofPG(2, 2n+1) according to a special structure that we call the daisy structure. This distribution is intimately related to a special block design which turns out to be isomorphic toPG(n, 2).We show a blocking set of 3qpoints inPG(2, 2n+1)that intersects each line in at least two points and we apply this to find a lower bound for the heterochromatic number of the projective plane.


2019 ◽  
Vol 19 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Mustafa Gezek ◽  
Vladimir D. Tonchev ◽  
Tim Wagner

Abstract The resolutions and maximal sets of compatible resolutions of all 2-(120,8,1) designs arising from maximal (120,8)-arcs, and the 2-(52,4,1) designs arising from previously known maximal (52,4)-arcs, as well as some newly discovered maximal (52,4)-arcs in the known projective planes of order 16, are computed. It is shown that each 2-(120,8,1) design associated with a maximal (120,8)-arc is embeddable in a unique way in a projective plane of order 16. This result suggests a possible strengthening of the Bose–Shrikhande theorem about the embeddability of the complement of a hyperoval in a projective plane of even order. The computations of the maximal sets of compatible resolutions of the 2-(52,4,1) designs associated with maximal (52,4)-arcs show that five of the known projective planes of order 16 contain maximal arcs whose associated designs are embeddable in two nonisomorphic planes of order 16.


10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 131
Author(s):  
Vira Hari Krisnawati ◽  
Corina Karim

<p class="abstract"><span lang="IN">In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system <em>S</em>(<em>t</em>, <em>k</em>, <em>v</em>) is a set of <em>v</em> points and <em>k</em> blocks which satisfy that every <em>t</em>-subset of <em>v</em>-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with <em>t</em> = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order.</span></p><p class="abstract"><span lang="IN">In this paper, we observe some properties from construction of finite projective planes of order 2 and 3. Also, we analyse the intersection between two projective planes by using some characteristics of the construction and orbit of projective planes over some representative cosets from automorphism group in the appropriate symmetric group.</span></p>


1976 ◽  
Vol 41 (2) ◽  
pp. 391-404 ◽  
Author(s):  
J. C. E. Dekker

The main purpose of this paper is to show how partial recursive functions and isols can be used to generalize the following three well-known theorems of combinatorial theory.(I) For every finite projective plane Π there is a unique number n such that Π has exactly n2 + n + 1 points and exactly n2 + n + 1 lines.(II) Every finite projective plane of order n can be coordinatized by a finite planar ternary ring of order n. Conversely, every finite planar ternary ring of order n coordinatizes a finite projective plane of order n.(III) There exists a finite projective plane of order n if and only if there exist n − 1 mutually orthogonal Latin squares of order n.


Sign in / Sign up

Export Citation Format

Share Document