resolving set
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 52)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 21 ◽  
pp. 1-8
Author(s):  
Varanoot Khemmani ◽  
Witsarut Pho-On ◽  
Supachoke Isariyapalakul

For an ordered set W = {w1,w2, ...,wk} of k distinct vertices in a connected graph G, the representation of a vertex v of G with respect to W is the k-vector r(v|W) = (d(v,w1), d(v,w2), ..., d(v,wk)), where d(v,wi) is the distance from v to wi for 1 ≤ i ≤ k. The setW is called a connected local resolving set of G if the representations of every two adjacent vertices of G with respect to W are distinct and the subgraph ⟨W⟩ induced by W is connected. A connected local resolving set of G of minimum cardinality is a connected local basis of G. The connected local dimension cld(G) of G is the cardinality of a connected local basis of G. In this paper, the connected local dimensions of some well-known graphs are determined. We study the relationship between connected local bases and local bases in a connected graph, and also present some realization results.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Laxman Saha ◽  
Rupen Lama ◽  
Kalishankar Tiwary ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sunny Kumar Sharma ◽  
Hassan Raza ◽  
Vijay Kumar Bhat

Minimum resolving sets (edge or vertex) have become an integral part of molecular topology and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for the identification of each item contained in the network, uniquely. The distance between an edge e = cz and a vertex u is defined by d(e, u) = min{d(c, u), d(z, u)}. If d(e1, u) ≠ d(e2, u), then we say that the vertex u resolves (distinguishes) two edges e1 and e2 in a connected graph G. A subset of vertices RE in G is said to be an edge resolving set for G, if for every two distinct edges e1 and e2 in G we have d(e1, u) ≠ d(e2, u) for at least one vertex u ∈ RE. An edge metric basis for G is an edge resolving set with minimum cardinality and this cardinality is called the edge metric dimension edim(G) of G. In this article, we determine the edge metric dimension of one-pentagonal carbon nanocone (1-PCNC). We also show that the edge resolving set for 1-PCNC is independent.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liying Pan ◽  
Muhammad Ahmad ◽  
Zohaib Zahid ◽  
Sohail Zafar

A source detection problem in complex networks has been studied widely. Source localization has much importance in order to model many real-world phenomena, for instance, spreading of a virus in a computer network, epidemics in human beings, and rumor spreading on the internet. A source localization problem is to identify a node in the network that gives the best description of the observed diffusion. For this purpose, we select a subset of nodes with least size such that the source can be uniquely located. This is equivalent to find the minimal doubly resolving set of a network. In this article, we have computed the double metric dimension of convex polytopes R n and Q n by describing their minimal doubly resolving sets.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Ahmad ◽  
Sadia Husain ◽  
Muhammad Azeem ◽  
Kashif Elahi ◽  
M. K. Siddiqui

In chemistry, graphs are commonly used to show the structure of chemical compounds, with nodes and edges representing the atom and bond types, respectively. Edge resolving set λ e is an ordered subset of nodes of a graph C , in which each edge of C is distinctively determined by its distance vector to the nodes in λ . The cardinality of a minimum edge resolving set is called the edge metric dimension of C . An edge resolving set L e , f of C is fault-tolerant if λ e , f ∖ b is also an edge resolving set, for every b in λ e , f . Resolving set allows obtaining a unique representation for chemical structures. In particular, they were used in pharmaceutical research for discovering patterns common to a variety of drugs. In this paper, we determine the exact edge metric and fault-tolerant edge metric dimension of benzenoid tripod structure and proved that both parameters are constant.


2021 ◽  
Vol 14 (3) ◽  
pp. 1015-1023
Author(s):  
Jerson Saguin Mohamad ◽  
Helen M. Rara

A set S of vertices in a connected graph G is a resolving hop dominating set of G if S is a resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the resolving hop domination number of G. This paper presents the characterizations of the resolving hop dominating sets in the join, corona and lexicographic product of two graphs and determines the exact values of their corresponding resolving hop domination number.


2021 ◽  
Vol 14 (3) ◽  
pp. 773-782
Author(s):  
Jean Mansanadez Cabaro ◽  
Helen Rara

Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set in G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. If G has a 2-resolving set, we denote the least size of a 2-resolving set by dim2(G), the 2-metric dimension of G. A 2-resolving set of size dim2(G) is called a 2-metric basis for G. This study deals with the concept of 2-resolving set of a graph. It  characterizes the 2-resolving set in the join and corona of graphs and determine theexact values of the 2-metric dimension of these graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Bao-Hua Xing ◽  
Sunny Kumar Sharma ◽  
Vijay Kumar Bhat ◽  
Hassan Raza ◽  
Jia-Bao Liu

A vertex w ∈ V H distinguishes (or resolves) two elements (edges or vertices) a , z ∈ V H ∪ E H if d w , a ≠ d w , z . A set W m of vertices in a nontrivial connected graph H is said to be a mixed resolving set for H if every two different elements (edges and vertices) of H are distinguished by at least one vertex of W m . The mixed resolving set with minimum cardinality in H is called the mixed metric dimension (vertex-edge resolvability) of H and denoted by m  dim H . The aim of this research is to determine the mixed metric dimension of some wheel graph subdivisions. We specifically analyze and compare the mixed metric, edge metric, and metric dimensions of the graphs obtained after the wheel graphs’ spoke, cycle, and barycentric subdivisions. We also prove that the mixed resolving sets for some of these graphs are independent.


2021 ◽  
Vol 53 (1) ◽  
pp. 118-133
Author(s):  
Badekara Sooryanarayana ◽  
Suma Agani Shanmukha

A subset  of vertices of a simple connected graph is a neighborhood set (n-set) of  G if G is the union of subgraphs of G induced by the closed neighbors of elements in S. Further, a set S is a resolving set of G if for each pair of distinct vertices x,y of G, there is a vertex s∈ S such that d(s,x)≠d(s,y). An n-set that serves as a resolving set for G is called an nr-set of G. The nr-set with least cardinality is called an nr-metric basis of G and its cardinality is called the neighborhood metric dimension of graph G. In this paper, we characterize graphs of neighborhood metric dimension two.


Sign in / Sign up

Export Citation Format

Share Document