scholarly journals Modeling Consecutive Failures of Repairable Systems, with Applications in Warranty Cost Analysis

2021 ◽  
Author(s):  
◽  
Sima Varnosafaderani

<p>Most engineered systems are inclined to fail sometime during their lifetime. Many of these systems are repairable and not necessarily discarded and replaced upon failure. Unlike replacements, where the failed system is replaced with a new and identical system, not all repairs have an equivalent effect on the working condition of the system. Describing the effect of repairs is a requirement in modeling consecutive failures of a repairable system–at the very least, it is assumed that a repair simply returns the failed system to an operational state without affecting its working condition (i.e. the repair is minimal). Although this assumption simplifies the modeling process, it is not the most accurate description of the effect of repair in real situations. Often, along with returning a failed system to an operational state, repairs can improve the working condition of the system, and thus, increase its reliability which impacts on the rate of future failures of the system.  Repair models provide a generalized framework for realistic modeling of consecutive failures of engineered systems, and have broad applications in fields such as system reliability and warranty cost analysis. The overall goal of this research is to advance the state of the art in modeling the effect of general repairs, and hence, failures of repairable systems. Two specific types of system are considered: (i) a system whose working condition initially improves with time or usage, and whose lifetime is modeled as a univariate random variable with a non-monotonic failure rate function; (ii) a system whose working condition deteriorates with age and usage, and whose lifetime is modeled as a bivariate random variable with an increasing failure rate function.  Most univariate lifetime distributions used to model system lifetimes are assumed to have increasing failure rate functions. In such cases, modeling the effect of general repairs is straightforward– the effect of a repair can bemodeled as a possible decrease, proportional to the effectiveness of the repair, in the conditional intensity function of the associated failure process. For instance, a general repair can be viewed as the replacement of the failed system with an identical system at a younger age, so that the conditional failure intensity following the repair is lower than the conditional failure intensity prior to the failure. When the failure rate function is initially decreasing, specifically bathtub-shaped, general repair models suggested for systems with increasing failure rate functions can only be applied when initial repairs are assumed to be minimal. In this study, we propose a new approach to modeling the effect of general repairs on systems with a bathtub-shaped failure rate function. The effect of a general repair is characterized as a modification in the conditional intensity function of the corresponding failure process, such that the system following a general repair is at least as reliable as a system that has not failed. We discuss applications of the results in the context of warranty cost analysis and provide numerical illustrations to demonstrate properties of the models.  Sometimes the failures of a system may be attributed to changes in more than one measure of its working condition– for instance, the age and some measure of the usage of the system (such as, mileage). Then, the system lifetime is modeled as a bivariate random variable. Most general repair models for systems with bivariate lifetime distributions involve reducing the failure process to a one-dimensional process by, for instance, assuming a relationship between age and usage or by defining a composite scale. Then, univariate repair models are used to describe the effect of repairs. In this study, we propose a new approach to model the effect of general repairs performed on a system whose lifetime is modeled as a bivariate random variable, where the distributions of the bivariate inter-failure lifetimes depend on the effect of all previous repairs and following a general repair, the system is at least as reliable as a system that has not failed. The lifetime of the original system is assumed to have an increasing failure rate (specifically, hazard gradient vector) function. We discuss applications of the associated failure process in the context of two-dimensional warranty cost analysis and provide simulation studies to illustrate the results.  This study is primarily theoretical, with most of the results being analytic. However, at times, due to the intractability of some of the mathematical expressions, simulation studies are used to illustrate the properties and applications of the proposed models and results.</p>

2021 ◽  
Author(s):  
◽  
Sima Varnosafaderani

<p>Most engineered systems are inclined to fail sometime during their lifetime. Many of these systems are repairable and not necessarily discarded and replaced upon failure. Unlike replacements, where the failed system is replaced with a new and identical system, not all repairs have an equivalent effect on the working condition of the system. Describing the effect of repairs is a requirement in modeling consecutive failures of a repairable system–at the very least, it is assumed that a repair simply returns the failed system to an operational state without affecting its working condition (i.e. the repair is minimal). Although this assumption simplifies the modeling process, it is not the most accurate description of the effect of repair in real situations. Often, along with returning a failed system to an operational state, repairs can improve the working condition of the system, and thus, increase its reliability which impacts on the rate of future failures of the system.  Repair models provide a generalized framework for realistic modeling of consecutive failures of engineered systems, and have broad applications in fields such as system reliability and warranty cost analysis. The overall goal of this research is to advance the state of the art in modeling the effect of general repairs, and hence, failures of repairable systems. Two specific types of system are considered: (i) a system whose working condition initially improves with time or usage, and whose lifetime is modeled as a univariate random variable with a non-monotonic failure rate function; (ii) a system whose working condition deteriorates with age and usage, and whose lifetime is modeled as a bivariate random variable with an increasing failure rate function.  Most univariate lifetime distributions used to model system lifetimes are assumed to have increasing failure rate functions. In such cases, modeling the effect of general repairs is straightforward– the effect of a repair can bemodeled as a possible decrease, proportional to the effectiveness of the repair, in the conditional intensity function of the associated failure process. For instance, a general repair can be viewed as the replacement of the failed system with an identical system at a younger age, so that the conditional failure intensity following the repair is lower than the conditional failure intensity prior to the failure. When the failure rate function is initially decreasing, specifically bathtub-shaped, general repair models suggested for systems with increasing failure rate functions can only be applied when initial repairs are assumed to be minimal. In this study, we propose a new approach to modeling the effect of general repairs on systems with a bathtub-shaped failure rate function. The effect of a general repair is characterized as a modification in the conditional intensity function of the corresponding failure process, such that the system following a general repair is at least as reliable as a system that has not failed. We discuss applications of the results in the context of warranty cost analysis and provide numerical illustrations to demonstrate properties of the models.  Sometimes the failures of a system may be attributed to changes in more than one measure of its working condition– for instance, the age and some measure of the usage of the system (such as, mileage). Then, the system lifetime is modeled as a bivariate random variable. Most general repair models for systems with bivariate lifetime distributions involve reducing the failure process to a one-dimensional process by, for instance, assuming a relationship between age and usage or by defining a composite scale. Then, univariate repair models are used to describe the effect of repairs. In this study, we propose a new approach to model the effect of general repairs performed on a system whose lifetime is modeled as a bivariate random variable, where the distributions of the bivariate inter-failure lifetimes depend on the effect of all previous repairs and following a general repair, the system is at least as reliable as a system that has not failed. The lifetime of the original system is assumed to have an increasing failure rate (specifically, hazard gradient vector) function. We discuss applications of the associated failure process in the context of two-dimensional warranty cost analysis and provide simulation studies to illustrate the results.  This study is primarily theoretical, with most of the results being analytic. However, at times, due to the intractability of some of the mathematical expressions, simulation studies are used to illustrate the properties and applications of the proposed models and results.</p>


2021 ◽  
Vol 27 (1) ◽  
pp. 43-53
Author(s):  
J.O. Braimah ◽  
J.A. Adjekukor ◽  
N. Edike ◽  
S.O. Elakhe

An Exponentiated Inverted Weibull Distribution (EIWD) has a hazard rate (failure rate) function that is unimodal, thus making it less efficient for modeling data with an increasing failure rate (IFR). Hence, the need to generalize the EIWD in order to obtain a distribution that will be proficient in modeling these types of dataset (data with an increasing failure rate). This paper therefore, extends the EIWD in order to obtain Weibull Exponentiated Inverted Weibull (WEIW) distribution using the Weibull-Generator technique. Some of the properties investigated include the mean, variance, median, moments, quantile and moment generating functions. The explicit expressions were derived for the order statistics and hazard/failure rate function. The estimation of parameters was derived using the maximum likelihood method. The developed model was applied to a real-life dataset and compared with some existing competing lifetime distributions. The result revealed that the (WEIW) distribution provided a better fit to the real life dataset than the existing Weibull/Exponential family distributions.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Azmat Ullah ◽  
Muhammad Ayat ◽  
Hakeem Ur Rehman ◽  
Lochan Kumar Batala

PurposeThe purpose of this paper is to develop a model that determines whether how much effort of preventive maintenance action is worthwhile for the consumer over the post-sale product life cycle of a repairable complex product where the product is under warranty and subject to stochastic multimode failure process, that is, damaging failure and light failure with different probabilities.Design/methodology/approachThe expected life cycle cost is designed for a warranted product from the consumer perspective. The product failure is quantified with failure rate function, which is the number of failures incurred over the product life cycle. The authors consider the failure rate function reduction method in their model where the scale parameter of a failure rate function is maximized by applying the optimal preventive maintenance level. The scale parameter of any failure distribution refers to the meantime to failure (MTTF). The first-order condition is applied with respect to the maintenance level in order to achieve the convexity of the nonlinear function of the expected life cycle cost function.FindingsThe authors have found analytically the close form of the preventive maintenance level, which can be used to find the optimal reduced form of the failure rate function of the product and the minimum product expected life cycle cost under the given condition of multimode stochastic failure process. The authors have suggested different maintenance policies to consumers in order to implement the proposed preventive maintenance model under different conditions. A numerical example further illustrated the analytical model by considering the Weibull distribution.Practical implicationsThe consumer may use this study in the accurate modeling of the life cycle cost of a product that is under warranty and fails with a multimode failure process. Also, the suggested preventive maintenance approach of this study helps the consumer in making appropriate maintenance decisions such as to minimize the expected life cycle cost of a product.Originality/valueThis study proposes an accurate estimation of a life cycle cost for a product that is under the support of warranty and fails with multimode. Furthermore, for such a kind of product, which is under warranty and fails with multimode, this study suggests a new preventive maintenance approach that assures the minimum expected life cycle cost.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Ronghua Wang ◽  
Naijun Sha ◽  
Beiqing Gu ◽  
Xiaoling Xu

We consider the parameter inference for a two-parameter life distribution with bathtub-shaped or increasing failure rate function. We present the point and interval estimations for the parameter of interest based on type-II censored samples. Through intensive Monte-Carlo simulations, we assess the performance of the proposed estimation methods by a comparison of precision. Example applications are demonstrated for the efficiency of the methods.


Author(s):  
JI HWAN CHA ◽  
JIE MI

Burn-in procedure is a manufacturing technique that is intended to eliminate early failures. In the literature, assuming that the failure rate function of the products has a bathtub shape the properties on optimal burn-in have been investigated. In this paper burn-in problem is studied under a more general assumption on the shape of the failure rate function of the products which includes the traditional bathtub shaped failure rate function as a special case. An upper bound for the optimal burn-in time is presented under the assumption of eventually increasing failure rate function. Furthermore, it is also shown that a nontrivial lower bound for the optimal burn-in time can be derived if the underlying lifetime distribution has a large initial failure rate.


Author(s):  
M. XIE ◽  
O. GAUDOIN ◽  
C. BRACQUEMOND

For discrete distribution with reliability function R(k), k = 1, 2,…,[R(k - 1) - R(k)]/R(k - 1) has been used as the definition of the failure rate function in the literature. However, this is different from that of the continuous case. This discrete version has the interpretation of a probability while it is known that a failure rate is not a probability in the continuous case. This discrete failure rate is bounded, and hence cannot be convex, e.g., it cannot grow linearly. It is not additive for series system while the additivity for series system is a common understanding in practice. In the paper, another definition of discrete failure rate function as In[R(k - 1)/R(k)] is introduced, and the above-mentioned problems are resolved. On the other hand, it is shown that the two failure rate definitions have the same monotonicity property. That is, if one is increasing/decreasing, the other is also increasing/decreasing. For other aging concepts, the new failure rate definition is more appropriate. The failure rate functions according to this definition are given for a number of useful discrete reliability functions.


Sign in / Sign up

Export Citation Format

Share Document