Study of the effect of test parameters on the assessment of steel resistance to carbon dioxide corrosion

2021 ◽  
Vol 87 (12) ◽  
pp. 36-41
Author(s):  
A. S. Fedorov ◽  
E. L. Alekseeva ◽  
A. A. Alkhimenko ◽  
N. O. Shaposhnikov ◽  
M. A. Kovalev

Carbon dioxide (CO2) corrosion is one of the most dangerous types of destruction of metal products in the oil and gas industry. The field steel pipelines and tubing run the highest risk. Laboratory tests are carried out to assess the resistance of steels to carbon dioxide corrosion. However, unified requirements for certain test parameters are currently absent in the regulatory documentation. We present the results of studying the effect of the parameters of laboratory tests on the assessment of the resistance of steels to CO2 corrosion. It is shown that change in the parameters of CO2 concentration, chemical composition of the water/brine system, the buffer properties and pH, the roughness of the sample surface, etc., even in the framework of the same laboratory technique, can lead in different test results. The main contribution to the repeatability and reproducibility of test results is made by the concentration of CO2, pH of the water/brine system, and surface roughness of the samples. The results obtained can be used in developing recommendations for the choice of test parameters to ensure a satisfactory convergence of the results gained in different laboratories, as well as in elaborating of a unified method for assessing the resistance of steels to carbon dioxide corrosion.

Author(s):  
Ivan Havrylovych Zezekalo ◽  
Hanna Anatoliyivna Dumenko

The current state of the oil and gas industry of Ukraine and the possibility of increasing the hydrocarbon base due to the introduction of fields with compacted reservoirs, which contain significant gas resources. Some methods of intensification of wells that are used in Ukraine, such as hydraulic fracturing and the GasGun method, are considered. Their main shortcomings are given: unforeseen situations of depressurization of the water horizon, use of large volumes of water, utilization of process water, incomplete release of rupture fluid from the reservoir, swelling and hydration of clay components of the reservoir, impossibility of use at extremely high temperatures and pressures. The world modern technologies based on the action of inert gases in hydrocarbon production are covered. Studies on the application of anhydrous rock breaks and intensification methods using inert gases are analyzed. The application of the method of pneumatic compaction of coal seams in Ukraine with the use of flue gases for the release of methane and degassing of coal mines is presented. Modern studies on the use of liquid nitrogen and liquefied carbon dioxide as fracturing agents with rocks with low filtration–capacity properties are presented. The main advantages of using nitrogen, liquefied and supercritical carbon dioxide as reservoir decompression agents are presented. It is proposed to study the method of pneumatic compaction on different samples of rocks in the laboratory using various agents and surfactants, select the appropriate reagents and develop technology for pneumatic rupture of hydrocarbon reservoirs as a cheap and environmentally friendly alternative to existing methods.


2021 ◽  
Author(s):  
Przemyslaw Lutkiewicz ◽  
David Robertson ◽  
Sam (Kwok Lun) Lee

Abstract Latest development in oil and gas industry is focused on higher pressure and temperature. In addition, standard oil and gas components are more frequent adapted to the other applications like aerospace, food processing, renewable energy. For those conditions, tightness is even more critical than before. In the existing codes the requirements for different tightness classes can be find as well as detailed fugitive emission test descriptions. However, the complete design methodology for HPHT seal solution is still missing. There is no engineering procedure/methodology in the code which will link the design concept, R&D process to the prototype and real tests results. The method which will predict tightness for each size and each configuration/condition is not there. Therefore, there is an urgent need to understand the leakage phenomena and describe it by simplified and safe engineering method. Method, which will connect the design concept with real behavior and be in agreement (or conservative) with test results. By having such method, it will be possible to understand better the sealing mechanism in the existing solutions as well as designing new robust, simple, and cheap (optimized) solutions. There are some more or less accurate methods/rules which are already existing in the supplier companies. There is also more and more research about the continuum flow between two surfaces in contact. Based on those sources in this paper we will present the concept for metal to metal sealing solution designing methodology which can be implemented for future revision of the designing codes. The method which can be used simply and effectively and help to understand the current designs and further R&Ds. Presented here design concept, will be described based on example. The example will go through the process from design concept to the real component tightness test.


2021 ◽  
Author(s):  
Ossi Lehtikangas ◽  
Arto Voutilainen ◽  
Antti Nissinen ◽  
Pasi Laakkonen ◽  
Sinoj Cyriac ◽  
...  

Abstract Deposition formation inside pipelines is a major and growing problem in the oil and gas industry. The optimal use of prevention and remediation tools such as chemical inhibitors and cleaning processes could lead to major savings due to minimized production problems and optimized pipe cleaning costs. This requires characterization and quantification of the actual deposits inside pipelines and downholes. Recently, a novel deposition inline inspection sensor moving inside the pipeline has been proposed based on "inside-out" electrical tomography. In this sensor, the distribution of electrical properties between the sensor and the pipe wall are estimated based on measurements carried out using electrodes around the sensor. In this study, the next generation sensor moving inside the pipeline is described and a deep neural network based approach to deposit estimation is introduced. Test results from a 70 m long semi-industrial scale flow loop containing paraffin wax and calcium carbonate deposits of different thicknesses are shown. Challenges include the changing position and orientation of the sensor during the low. The results show that the sensor is able to measure both deposit thickness and type with good accuracy which indicates that the sensor is suitable for industrial use. Accurate knowledge about deposits allows future blockage prevention, detecting build-up locations in the early phase, increasing accuracy of multi-phase flow and deposition models, optimization of chemical use and validation of deposit cleaning tools before integrity campaigns leading to overall reduced pipeline operation costs.


2020 ◽  
Vol 25 (2) ◽  
pp. 34-44
Author(s):  
M.B. Adigezalova

Using the gravimetric method, the inhibitory efficiency of the combined inhibitor with respect to hydrogen sulfide and carbon dioxide corrosion of St3 steel in model produced water MI was studied. Corrosion tests were carried out in 0,5 liter sealed vessels on St3 samples of size 30х20х1. Gossypol resin + MARZA was used as a multifunctional combined inhibitor. Diesel fuel and kerosene were used as solvent. It has been established that the protective effect of using a multi-functional combined inhibitor in formation water with oil containing hydrogen sulfide and carbon dioxide using kerosene as a solvent ranges from 75 to 96 and for diesel as 80 to 100. The combined inhibitor allows to achieve in the MI medium containing hydrogen sulfide and carbon dioxide in the process of daily testing the corrosion rate of steel is about 0,04 g/m2·h. only in a concentration of not less than 70 mg/l. However, with an increase in the duration of the test by an order of magnitude, a similar corrosion rate is observed already at an inhibitor concentration of 50 mg/l. The same is characteristic of carbon dioxide and hydrogen sulfide - carbon dioxide solutions.


2021 ◽  
Vol 4 (1) ◽  
pp. 465-478
Author(s):  
Tatiana N. Ivanova ◽  
Michał Zasadzień

Abstract Cementing of casing string is a final operation before the next stage of well construction; it provides maximum operational life of the well. Cementing of casing string is carried out with the use of technology, based on squeezing of the whole volume of drilling mud by special grouting composition. The main purposes of cementing include isolation of water-bearing horizon, strengthening of borehole walls in unconsolidated and unstable rocks. Well cementing process is divided into five subsequent operations. Firstly, grouting mixture is prepared in concrete mixers (cementing units) with necessary water-to-cement ratio and additives. Secondly, prepared grouting solution is injected in a well. Thirdly, the solution is squeezed into the space between the casing pipes and wellbore walls. Then it is necessary to wait until the cement sheath is hardened. And at last, quality control is carried out. For convenient transportation, the equipment for well cementing is installed on the truck chassis (KAMAZ, URAL and etc.). All components are poured in concrete mixer, then the water is added and everything is being mixed until formation of uniform mass, which is later pumped in a well. Oil and Gas Industry Safety Regulations say that «calculated endurance of casing string cementing should not exceed 75% of time of cement thickening, established by laboratory tests». Therefore, it is necessary to carry out all operations of injection of fluids into the well as soon as possible without any incompliances of the cementing technology. With cementing material used and its water-to-cement ratio of 0.5, the average time of cement thickening is 120 minutes, according to laboratory tests. Therefore, a set of operations of injection of fluids should not exceed 90 minutes.


2018 ◽  
Vol 251 ◽  
pp. 01016 ◽  
Author(s):  
Alexey Zhukov ◽  
Tatiana Konoval’tseva ◽  
Ekaterina Bobrova ◽  
Ekaterina Zinovieva ◽  
Kazbek Ivanov

Construction system consists of materials with different properties. The use of materials in the design should ensure maximum of its performance and its durability. The use of thermal insulation materials is an effective way to form the thermal envelope of a building, reducing energy costs and increasing the durability of building structures. The properties of materials are determined by their structure, which is formed in the process of technological influences. Formation of the insulating shell of oil and gas industry objects is possible only when considering the special features of the thermal insulation layer in the construction and the use of high-quality materials that retain their characteristics, both in the early stages of operation and throughout the calculation period. The first is achieved by competent design, the second the possibility of assessing the properties of thermal insulation (and predicting changes in these properties over time) directly in the construction site.The methodology for assessing the properties of insulating products includes two main components: testing facility and methodology for assessing operational stability. The methodology of conducting accelerated tests and prediction of durability is tested for mineral wool products of a layered, corrugated and volume-oriented structure. The test results give good convergence with the methods recommended by the building codes.


Author(s):  
A. R. Khafizov ◽  
◽  
V. V. Chebotarev ◽  
A. A. Mugatabarova ◽  

Corrosion destruction of the metal of the field equipment and gas pipelines of the oil and gas condensate field (OGCF) was revealed, the cause of which is carbon dioxide corrosion. In order to determine the corrosiveness of the OGCF equipment media, laboratory tests were carried out with periodic moisture condensation in an atmosphere of carbon dioxide, autoclave tests in the liquid phase at elevated temperatures and partial pressure of CO2, and laboratory tests in the gas-vapor phase in the presence of CO2. Tests were carried out on steel 20, the selected solutions were tested on pipe segments of 09G2S steels (well connections and loops) and J55LT (tubing) of 2 types (old, after operation in a well, and new, not operated). Studies have shown that steels used at OGCF (steel 20, J55LT and 09G2S) are not resistant to carbon dioxide corrosion. All items of equipment made of these steels will be potentially weakly resistant to corrosion in the oil and gas condensate field. It is proposed to conduct tests of corrosion inhibitors from various manufacturers in laboratory and field conditions. Recommendations are given for the corrosion inhibitor selected according to the test results. Keywords: local corrosion; aggressiveness of the environment; metal resistance; well piping; plume; tubing; laboratory tests; autoclave tests.


Sign in / Sign up

Export Citation Format

Share Document