scholarly journals Graph Self-Transformation Model Based on the Operation of Change the End of the Edge

2020 ◽  
Vol 23 (3) ◽  
pp. 315-335
Author(s):  
Igor Borisovich Burdonov

We consider a distributed network whose topology is described by an undirected graph. The network itself can change its topology, using special “commands” provided by its nodes. The work proposes an extremely local atomic transformation acb of a change the end c of the edge ac, “moving” along the edge cb from vertex c to vertex b. As a result of this operation, the edge ac is removed, and the edge ab is added. Such a transformation is performed by a “command” from a common vertex c of two adjacent edges ac and cb. It is shown that from any tree you can get any other tree with the same set of vertices using only atomic transformations. If the degrees of the tree vertices are bounded by the number d (d 3), then the transformation does not violate this restriction. As an example of the purpose of such a transformation, the problems of maximizing and minimizing the Wiener index of a tree with a limited degree of vertices without changing the set of its vertices are considered. The Wiener index is the sum of pairwise distances between the vertices of a graph. The maximum Wiener index has a linear tree (a tree with two leaf vertices). For a root tree with a minimum Wiener index, its type and method for calculating the number of vertices in the branches of the neighbors of the root are determined. Two distributed algorithms are proposed: transforming a tree into a linear tree and transforming a linear tree into a tree with a minimum Wiener index. It is proved that both algorithms have complexity no higher than 2n–2, where n is the number of tree vertices. We also consider the transformation of arbitrary undirected graphs, in which there can be cycles, multiple edges and loops, without restricting the degree of the vertices. It is shown that any connected graph with n vertices can be transformed into any other connected graph with k vertices and the same number of edges in no more than 2(n+k)–2.

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


1965 ◽  
Vol 17 ◽  
pp. 923-932 ◽  
Author(s):  
Laurence R. Alvarez

If (L, ≥) is a lattice or partial order we may think of its Hesse diagram as a directed graph, G, containing the single edge E(c, d) if and only if c covers d in (L, ≥). This graph we shall call the graph of (L, ≥). Strictly speaking it is the basis graph of (L, ≥) with the loops at each vertex removed; see (3, p. 170).We shall say that an undirected graph Gu can be realized as the graph of a (modular) (distributive) lattice if and only if there is some (modular) (distributive) lattice whose graph has Gu as its associated undirected graph.


1971 ◽  
Vol 14 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Milan Sekanina

Let (G, ρ) be a finite connected (undirected) graph without loops and multiple edges. So x, y being two elements of G (vertices of the graph (G, ρ)), 〈x, y〉 ∊ ρ means that x and y are connected by an edge. Two vertices x, y ∊ G have the distance μ(x, y) equal to n, if n is the smallest number with the following property: there exists a sequence x0, x1, …, xn of vertices such that x0 = x, xn = y and 〈xi-1, Xi〉 ∊ ρ for i = 1, …, n. If x ∊ G, we put μ(x, x) = 0.


Author(s):  
Hanyuan Deng ◽  
G. C. Keerthi Vasan ◽  
S. Balachandran

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances between all pairs of vertices of [Formula: see text]. A connected graph [Formula: see text] is said to be a cactus if each of its blocks is either a cycle or an edge. Let [Formula: see text] be the set of all [Formula: see text]-vertex cacti containing exactly [Formula: see text] cycles. Liu and Lu (2007) determined the unique graph in [Formula: see text] with the minimum Wiener index. Gutman, Li and Wei (2017) determined the unique graph in [Formula: see text] with maximum Wiener index. In this paper, we present the second-minimum Wiener index of graphs in [Formula: see text] and identify the corresponding extremal graphs, which solve partially the problem proposed by Gutman et al. [Cacti with [Formula: see text]-vertices and [Formula: see text] cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017) 189–200] in 2017.


2019 ◽  
Vol 17 (1) ◽  
pp. 668-676
Author(s):  
Tingzeng Wu ◽  
Huazhong Lü

Abstract Let G be a connected graph and u and v two vertices of G. The hyper-Wiener index of graph G is $\begin{array}{} WW(G)=\frac{1}{2}\sum\limits_{u,v\in V(G)}(d_{G}(u,v)+d^{2}_{G}(u,v)) \end{array}$, where dG(u, v) is the distance between u and v. In this paper, we first give the recurrence formulae for computing the hyper-Wiener indices of polyphenyl chains and polyphenyl spiders. We then obtain the sharp upper and lower bounds for the hyper-Wiener index among polyphenyl chains and polyphenyl spiders, respectively. Moreover, the corresponding extremal graphs are determined.


1972 ◽  
Vol 15 (3) ◽  
pp. 437-440 ◽  
Author(s):  
I. Z. Bouwer ◽  
G. F. LeBlanc

Let G denote a connected graph with vertex set V(G) and edge set E(G). A subset C of E(G) is called a cutset of G if the graph with vertex set V(G) and edge set E(G)—C is not connected, and C is minimal with respect to this property. A cutset C of G is simple if no two edges of C have a common vertex. The graph G is called primitive if G has no simple cutset but every proper connected subgraph of G with at least one edge has a simple cutset. For any edge e of G, let G—e denote the graph with vertex set V(G) and with edge set E(G)—e.


1962 ◽  
Vol 5 (3) ◽  
pp. 221-227 ◽  
Author(s):  
G.A. Dirac

This paper is concerned with undirected graphs which may be infinite and may contain multiple edges. The Axiom of Choice is assumed. The terms path, infinite path and circuit are used in the same sense as Weg, unendlicher Weg and Kreis, respectively, are used in D. Konig's book [1]. The valency of a vertex is the number of edges incident with it.The length of a path is the number of edges in it. The following theorem is a generalization of the well known fact that if a vertex of a graph is not a cut-vertex (Artikulation [2]) and has valency ≧2, then the graph contains at least one circuit to which the vertex belongs.


1967 ◽  
Vol 19 ◽  
pp. 1319-1328 ◽  
Author(s):  
M. E. Watkins ◽  
D. M. Mesner

In this note, G will denote a finite undirected graph without multiple edges, and V = V(G) will denote its vertex set. The largest integer n for which G is n-vertex connected is the vertex-connectivity of G and will be denoted by λ = λ(G). One defines ζ to be the largest integer z not exceeding |V| such that for any set U ⊂ V with |U| = z, there is a cycle in G which contains U. The symbol i(U) will denote the component index of U. As a standard reference for this and other terminology, the authors recommend O. Ore (3).


2020 ◽  
Vol 40 (4) ◽  
pp. 1121-1135
Author(s):  
Debarun Ghosh ◽  
Ervin Győri ◽  
Addisu Paulos ◽  
Nika Salia ◽  
Oscar Zamora

Abstract The Wiener index of a connected graph is the sum of the distances between all pairs of vertices in the graph. It was conjectured that the Wiener index of an n-vertex maximal planar graph is at most $$\lfloor \frac{1}{18}(n^3+3n^2)\rfloor $$ ⌊ 1 18 ( n 3 + 3 n 2 ) ⌋ . We prove this conjecture and determine the unique n-vertex maximal planar graph attaining this maximum, for every $$ n\ge 10$$ n ≥ 10 .


Sign in / Sign up

Export Citation Format

Share Document