scholarly journals Thinking about National Standards in Science Education

Author(s):  
Catherine Milne

In this paper I present a critical reflection on the rationale and history of the Next Generation Science Standards (NGSS), which has sometimes been presented as the US version of a vision for a standardized science curriculum. I explore how the monograph, The Framework for K-12 Science Education, established the groundwork for the Next Generation Science Standards. I argue that crisis narratives often drive the arguments for standardization but in the US there was also an argument of the need to build a level of national uniformity in the content and practices that are presented to students as a tool for ensuring that children and youth have equitable access to important knowledge. However, at the same time educators have a responsibility for ensuring that homogenization achieved through standards does not enshrine the very inequities and ideologies public education seeks to change.

2015 ◽  
Vol 2 (1) ◽  
pp. 51
Author(s):  
Stephanie J. Slater ◽  
Timothy F. Slater

<p class="AbstractSummary">Although the <em>Next Generation Science Standards</em> (<em>NGSS</em>) are not federally mandated national standards or performance expectations for K-12 schools in the United States, they stand poised to become a de facto national science and education policy, as state governments, publishers of curriculum materials, and assessment providers across the country consider adopting them. In order to facilitate national buy-in and adoptions, <em>Achieve, Inc</em>., the non-profit corporation awarded the contract for writing the <em>NGSS</em>, has repeatedly asserted the development of the Standards to be a state-driven and transparent process, in which the scientific content is taken "verbatim", from the 2011 NRC report, <em>Frameworks for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas</em>. This paper reports on an independently conducted fidelity check within the content domain of astronomy and the space sciences, conducted to determine the extent to which the <em>NGSS </em>science content is guided by the <em>Frameworks</em>, and the extent to which any changes have altered the scientific intent of that document. The side-by-side, two-document comparative analysis indicates that the science of the <em>NGSS</em> is significantly different from the <em>Frameworks</em>. Further, the alterations in the science represent a lack of fidelity, in that they have altered the parameters of the science and the instructional exposure (e.g., timing and emphasis). As a result the <em>NGSS</em> are now poised to interfere with widely desired science education reform and improvement. This unexpected finding affords scientists, educators, and professional societies with an opportunity, if not a professional obligation, to engage in positively impacting the quality of science education by conducting independent fidelity checks across other disciplines. This could provide a much needed formal support and guidance to schools, teachers, curriculum developers, and assessment providers.</p>


2016 ◽  
Vol 78 (5) ◽  
pp. 370-375 ◽  
Author(s):  
Wendy R. Johnson

The National Research Council's Framework for K–12 Science Education and the resulting Next Generation Science Standards call for engaging students in the practices of science to develop scientific literacy. While these documents make the connections between scientific knowledge and practices explicit, very little attention is given to the shared values and commitments of the scientific community that underlie these practices and give them meaning. I argue that effective science education should engage students in the practices of science while also reflecting on the values, commitments, and habits of mind that have led to the practices of modern science and that give them meaning. The concept of methodological naturalism demonstrates the connection between the values and commitments of the culture of science and its practices and provides a useful lens for understanding the benefits and limitations of scientific knowledge.


2019 ◽  
Vol 81 (8) ◽  
pp. 561-567
Author(s):  
Kathryn S. Craven ◽  
Alex Collier ◽  
Jay Y. S. Hodgson

Field investigations represent an excellent opportunity to integrate the Next Generation Science Standards to complement and enhance both classroom and laboratory instruction. This inquiry-based exercise is designed to introduce students to the basic anatomy, ecology, and natural history of a common backyard denizen, the wolf spider (Lycosidae). Students are charged with developing one or more testable hypotheses regarding wolf spiders in their own backyards. Wolf spiders are an ideal subject for field investigation because their secondary eyes possess a highly reflective layer called the tapetum lucidum. At night, this layer produces an unmistakable “eyeshine” when viewed with the beam of a flashlight. Playing the role of students, we tested the hypothesis that wolf spiders should occur at higher density in an undeveloped field than in a typical backyard. To test this, we utilized random quadrat sampling in both habitats using flashlights to detect nocturnal eyeshine. Students obtaining similar results would likely have concluded that wolf spiders were more abundant in natural habitats.


Sign in / Sign up

Export Citation Format

Share Document