scholarly journals Investigation on the Mechanical Properties of Fiber Reinforced Recycled Concrete

2016 ◽  
Vol 2 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hasan Jalilifar ◽  
Fatholla Sajedi ◽  
Sadegh Kazemi

The flexural strength of conventional concrete material is known to be enhanced by incorporating a moderate volume-fraction of randomly distributed fibers. However, there is limited information on describing the influence of fiber volume-fraction on the compressive and flexural strength of recycled coarse aggregate concrete (RCA-C) material. This paper reports on experimental test results of the RCA-C material replaced with 0, 30, 50 and 100% recycled aggregate and 0, 0.5, 1 and 1.5% steel fiber volume fraction. Three-point flexural tests of notched prism specimens were completed. The mechanical properties in compression were characterized using cube specimens. Significant improvement in compressive and flexural strength of RCA-C was found as fiber content increased from 0 to 1.5%. The experimental test results of RCA-C were further evaluated to investigate the influence of fiber content on flexural toughness. According to test results, the addition of steel fibers to RCA-C material appreciably increased the flexural toughness.

2015 ◽  
Vol 799-800 ◽  
pp. 794-799 ◽  
Author(s):  
Sebti Jaballi ◽  
Imed Miraoui ◽  
Hedi Hassis

This paper focuses on the optimization of flexural strength and thermal conductivity of mortar reinforced with Alfa fibers. Fibers were manually extracted from Alfa leafs to avoid the risk of degradation of mechanical properties. A first group of samples (300 x 300 x 30 mm) having a fiber volume fraction of 0.5 to 1.5% is prepared to measure the thermal conductivity.The second composite family (40 x 40 x 160 mm) cured in a wet chamber is used for measuring its bending strength. The fiber percentage varies from 0.74 to 1,85%.The results show that the thermal conductivity decreases by increasing the fiber content. While the optimal percentage of fiber for the flexural strength is estimated at 1%, corresponding to an increase of 27% in strength.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2019 ◽  
Vol 28 (4) ◽  
pp. 273-284
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

Rising environmental concerns and depletion of petrochemical resources have resulted in an increased interest in biodegradable natural fiber-reinforced polymer composites. In this research work, jute fiber has been used as a reinforcement and polylactic acid (PLA) as the matrix material to develop jute/PLA green composites with the help of compression molding technique. The effect of fiber volume fraction ranging from 25% to 50% and curing temperature ranging from 160°C to 180°C on different samples were investigated for mechanical properties and water absorption. Results obtained from various tests indicate that with an increase in the fiber volume fraction, tensile and flexural strength increases till 30% fiber fraction, thereafter decreases with further increase in fiber content. Maximum tensile and flexural strength of jute/PLA composites was obtained with 30% fiber volume fraction at 160°C curing temperature. The trend obtained from mechanical properties is further justified through the study of surface morphology using scanning electron microscopy.


2020 ◽  
pp. 073168442096321
Author(s):  
Dakota R Hetrick ◽  
Seyed Hamid Reza Sanei ◽  
Charles E Bakis ◽  
Omar Ashour

Fiber volume fraction is a driving factor in mechanical properties of composites. Micromechanical models are typically used to predict the effective properties of composites with different fiber volume fractions. Since the microstructure of 3D-printed composites is intrinsically different than conventional composites, such predictions need to be evaluated for 3D-printed composites. This investigation evaluates the ability of the Voigt, Reuss, and Halpin–Tsai models to capture the dependence of modulus and strength of 3D-printed composites on varying fiber volume fraction. Tensile coupons were printed with continuous carbon fiber-reinforced Onyx matrix using a Markforged Mark Two printer. Specimens were printed at five different volume fractions with unidirectional fibers oriented at either [Formula: see text] to obtain longitudinal, shear, and transverse properties, respectively. It is shown that the Voigt model provides an excellent fit for the longitudinal tensile strength and a reasonable fit for the longitudinal modulus with varied fiber content. For the transverse direction, while the Reuss model fails to capture the transverse modulus trend, the Halpin–Tsai model provides a reasonable fit as it incorporates more experimental parameters. Like conventional composites, addition of fibers degrades the transverse strength, and the transverse strength decreases with increasing fiber volume fraction. The shear modulus variation with fiber content could not be fitted reasonably with either Halpin–Tsai model or Reuss model.


2012 ◽  
Vol 204-208 ◽  
pp. 3961-3964
Author(s):  
Yao Wang ◽  
Wei Hong Xuan ◽  
Yu Zhi Chen ◽  
Xiao Hong Chen ◽  
Gang Zheng

The compressive and flexural strength of ordinary mortar and fiber reinforced mortar with five different pp fiber content were tested in this paper. The results show that the compressive strength reduced gradually with PP fiber increasing, and the flexural strength increased when the fiber volume fraction is no more than 0.12%. The higher water ratio can weaken the cohesiveness of the fiber and cement material, and the influence of polypropylene fiber on the flexural strength of mortar decreased after soaking. The major strength damage in the process of curing is caused in the early age and appropriate amount of fiber is beneficial to reduce strength damage.


Author(s):  
John K. Makunza ◽  
G. Senthil Kumaran

Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of concrete such as compressive and tensile strengths. Concrete is strong in compression but weak in tension and is a brittle material. In the construction industry, strength, durability and cost are among the major factors for selecting the suitable construction materials. During this investigation, the mechanical properties of sisal fibers reinforced concrete (SFRC) were assessed namely, flexural strength, tensile strength ad interfacial bond strength. The said properties were assessed in two types of reinforcement namely, randomly oriented sisal fibers and parallel oriented sisal fibers reinforcement. In both cases the sisal fibers were varied in volume fractions so as to establish the optimum value. The mechanical properties of flexural and tensile strengths were found to increase considerably with increasing fiber volume fractions until an optimum volume fraction is reached, thereafter, the strengths were found to decrease continuously. The prominent increment of 32.4% in flexural strength at fiber volume fraction of 2.0% parallel reinforced fiber concrete composite was observed. There was very small increment on both flexural and tensile strength for randomly oriented chopped sisal fibers reinforced concrete (SFRC). The Interfacial bond strength was found to be 0.12 N/mm2 and was observed to be prominent for chopped sisal fibers reinforced concrete specimens tested for flexural strength. During failure, fiber pull-out was observed and the composite was observed to behave in a ductile manner whereby the fibers were able to carry more load while full fracture had occurred on the specimen. The water absorption capacity of the SFRC was found to increase with increasing sisal fiber volume fraction.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


1994 ◽  
Vol 77 (7) ◽  
pp. 1897-1900 ◽  
Author(s):  
Hockin H. K. Xu ◽  
Claudia P. Ostertag ◽  
Linda M. Braun ◽  
Isabel K. Lloyd

Sign in / Sign up

Export Citation Format

Share Document