Метод определения параметров утечек в трубопроводах на основе гидродинамических моделей

Author(s):  
Denis V. Bondar ◽  
Vladimir V. Zholobov ◽  
Oleg S. Nadezhkin

It is known that on the basis of the pipeline non-stationary hydrodynamic model after identification of parameters included in it, it is possible to adequately reproduce the full-scale hydraulic characteristics of transported medium flow by resolving the primal problem of hydraulics, in particular, the primal problem of identifying leakage parameters. The numerical solution of the inverse problem, in contrast to the analytical solution, is usually reduced to a multiple solution of the primal problem. In the present work, the hydrodynamic mathematical model of a pipeline with two parameters that have been identified and fluid withdrawal in the set section is confined to differential equations of evolutionary type for medium cross-section pressure and mass flow. Based on the built partial analytical solutions of these equations, dependences have been obtained for calculation of pressure values in the oil pipeline operated in stationary mode with existing liquid withdrawal (leakage). Results of application of analytical solutions to the method of sensitivity functions in the inverse problem of identifying leakage parameters have been reviewed. Exact analytical solution (in implicit form) of the inverse problem has been obtained to make it possible to relate the location of the leak to readings of pressure sensors, to the pipeline and the transported fluid parameters. Известно, что на основе нестационарной гидродинамической модели трубопровода после идентификации входящих в нее параметров можно адекватно воспроизводить натурные гидравлические характеристики потока транспортируемой среды путем решения прямой задачи гидравлики, в частности, прямой задачи об утечке, когда местоположение и расход отбора заданы. Численное решение обратной задачи, в отличие от аналитического обычно сводится к многократному решению прямой задачи. В предлагаемой работе гидродинамическая математическая модель трубопровода с двумя параметрами, прошедшими идентификацию, и отбором жидкости в заданном сечении сведена к дифференциальным уравнениям эволюционного типа для среднего по сечению давления и массового расхода. На основе частных аналитических решений данных уравнений получены зависимости для определения давления в работающем в стационарном режиме нефтепроводе при наличии отбора (утечки). Рассмотрены результаты применения аналитических решений к методу функций чувствительности в обратной задаче утечки. Получено точное аналитическое решение (в неявной форме) обратной задачи, позволяющее связать местоположение утечки с показаниями датчиков давления, характеристиками трубопровода и транспортируемой среды.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mehdi Delkhosh ◽  
Mohammad Delkhosh

Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011). In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011; Borhanifar et al. 2011; Sweilam and Nagy, 2011; Gülsu et al. 2011; Mohyud-Din et al. 2010; and Li et al. 1996).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


1998 ◽  
Vol 46 (3) ◽  
pp. 283-305
Author(s):  
Nguyen X. Vinh ◽  
Pierre T. Kabamba ◽  
Tetsuya Takehira

1963 ◽  
Vol 18 (4) ◽  
pp. 531-538
Author(s):  
Dallas T. Hayes

Localized solutions of the BETHE—GOLDSTONE equation for two nucleons in nuclear matter are examined as a function of the center-of-mass momentum (c. m. m.) of the two nucleons. The equation depends upon the c. m. m. as parameter due to the dependence upon the c. m. m. of the projection operator appearing in the equation. An analytical solution of the equation is obtained for a non-local but separable potential, whereby a numerical solution is also obtained. An approximate solution for small c. m. m. is calculated for a square-well potential. In the range of the approximation the two analytical solutions agree exactly.


2017 ◽  
Vol 19 (48) ◽  
pp. 32381-32388 ◽  
Author(s):  
Anna G. Matveeva ◽  
Vyacheslav M. Nekrasov ◽  
Alexander G. Maryasov

The model-free approach used does not introduce systematic distortions in the computed distance distribution function between two spins and appears to result in noise grouping in the short distance range.


Sign in / Sign up

Export Citation Format

Share Document